
AD-A175 198 SIMULATION USING SMNLLTALK(U) ARMY BALLISTIC RESEP"c
LAB ABERDEEN PROVING GROUND MO R A HELFMRN ET AL,
OCT 86 BRL-TR-2764

UNCLASSIFIED F/G 9/2 UL

E//EEEE/IEEEEE/I//EEEEEE//EE
/II//EE/I/EEEE
//I//EE/II///E
E/I//I//EE///E
//E//EEEEE//EE

1111 L-0 J111 2.0I
-IlL

8
1.25 L.4A .

IluOP RESOLUTION TS

5, ROCOPY RESOLUTIOOJ TEST CHART

I1

'Ie|~

US ARMY
MAlER'E,

COMMAND TECHNICAL REPORT BRL-TR-2764

00

SSIMULATION USING SMALLTALK

Richard A. Helfman
Mark H. Ralston DTIC

J. Robert Suckling OEET
DEC1218

C October 1986

o--

AMOVD FM PUBlUC V.IE N1UMION UMID.

US ARMY BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

86 "9; "Z I

*. -

Destroy this report when it is no longer needed.
Do not return it to the originator.

Additional copies of this report may be.obtained
from the National Technical Information Service,
U. S. Department of Commerce, Springfield, Virginia
22161.

The findings in this report are not to be construed as an official
Department of the Army position, unless so designated by other
authorized documents.

The use of trade names or manufacturers' names in this report
does not constitute indorsement of any commercial product.

4i

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE ('Pfen Date Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

I REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

TECHNICAL REPORT BRL-TR-2764
4. TITLE (and Subtitle) 5. TYPE OF REPORT 4 PERIOD COVERED

SIMULATION USING SMALLTALK FINAL

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(&) 8. CONTRACT OR GRANT NUMBER(&)
Richard A. Helfman
Mark H. Ralston
J. Robert Suckling

9. PERFORMING ORGANIZATION NAME AND ADDRESS 1O. PROGRAM ELEMENT, PROJECT. TASK.
U.S. Army Ballistic Research Laboratory AREA & WORK UNIT NUMBERS

ATTN: SLCBR-VL
Aberdeen Proving Ground, MD 21005-5066

I1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

U.S. Army Ballistic Research Laboratory October 1996
ATTN: SLCBR-DD-T 13. NUMBER OF PAGES

Aberdeen Proving Ground, MD 21005-5066 170
14. MONITORING AGEN1-Y NAME & ADDRESS(i1 different from Controlting Office) IS. SECURITY CLASS. (of thl, report)

UNCLASSIFIED
, ISs. DECLASSIFICATION'DOWNGRADING

I SCHEDULE

16. DISTRIBUTION STATEMENT (of thte Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, It different from Report)

16. SUPPLEMENTARY NOTES

19 KEY WORDS (Continue on teverse side if neceeary and identify by block number)

simulation
object oriented programming

2C ABSTrACT rCotnaie am verso 0f 0f nc"u"ary md identify by block number)

Object oriented languages have been used successfully in such areas as
simulation, systems programming, graphics, and Artificial Intelligence (AI).
Object oriented programming has become increasingly popular in the 1980's.
SMALLTALK is an object oriented language developed by Xerox, that has features
particularly suited to simulation.

(Continued)

DD I A
1

7 1473 EDFTIOw OF I NOV S IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (WIt,,n Dal Entered)

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

The purpose of this paper is twofold, the first is to acquaint the reader
with t' concept of object oriented programming; the second is to describe how
the objct oriented language SMALLTALK was used for a simulation application at
the U.S. Army Ballistic Research Laboratory (BRL).

* The common theme in object oriented languages is objects. Objects possess
properties of procedures (functic, s, subroutines) and data since they perform
computations and store information. This dual role contrasts with procedural
languages such as C, FORTRAN, and PASCAL which separate procedures from data.
Objects communicate by sending messages to other objects. Similar objects can
be grouped to form an entity called a class. A class represents a generic kind
of object, and can be thought of as a pattern or template for that kind of
object. The classes themselves can be objects, and classes can be grouped to
form a hierarchy of classes. An object in one class can inherit the behavior
of objects in its superclasses. Thus one can easily define classes that are
"nearly alike", since inheritance eliminates the need for duplicating redundant
information.

The U.S. Army Quartermaster School, Ft. Lee, VA, commissioned the BRL to per
form a study of the Graves Registration (GRREG) Service. The thrust of the study
was to evaluate the GRREG requirements of the future battlefield and evaluate
the ability of the GRREG system to meet these requirements. The study provided
1) a base line analysis of the ability of the present system to handle conven-
tional and contaminated remains, and 2) an analysis of several alternatives,
including changes in force structure, equipment, and GRREG procedures. The
recommendations of the study are intended to provide the Logistics Community a
direction for changes in graves registration doctrine, procedures, and organi-
zations.

The GRREG services are best described as a network of queues. The network
is rather complicated: consisting of several hundred individual queues that are
interconnected either in series or in parallel. The network will be described
in three levels of detail, with the basic level consisting of the individual
task queues, the intermediate level consisting of the three types of collecting
points (initial, intermediate, cemetery), and the top level showing the flow
from one collecting point to another.

Selected sections of the code will be examined in detail to illustrate the
various stages in the life of a GRREG worker, including creating a worker,
assigning a task, performing a task, and returning to idle status. Relevant
parts of the code will be reproduced as needed with the discussion, and the
complete code is included in the appendix.

.

UNCLASSIFIED
SECURITY CL.ASSIFICATION~ OF FT..j$ PAGE'Wh7er bare I' r

CONTENTS

I. Introduction .. 1

II. Object Oriented Programming 1
1. History .. 2
2. Objects and Messages 3
3. Classes .. 3
4. Inheritance 3
5. Data Abstraction 4

III. Introduction to Smalltalk 4
1. Syntax and Examples 5
2. Objects .. 7
3. Classes .. 7
4. Subclasses and Superclasses 9
5. Pseudo-variables 9
6. Messages ... 10

a. Messages without arguments 10
b. Messages with keyword arguments 10
c. Arithmetic messages 11

7. Assignments 11
8. Returned Values 11
9. Blocks and Arguments............................. 12
10. Conventions 13

IV. Predefined Classes in Smalltalk 14

1. Object ... 15
a. Undefined Object 15

Sb. Symbol 15
C. Boolean 15

Sd. Magnitude 15
(1) Char 16
(2) Number 16
(3) Radian 16
(4) Point 16

e. Random 17
f. Collection 18

(1) Bag/Set 18
(2) KeyedCollection 18

(a) Dictionary 19
(b) SequenceableCollection 20

g. Block .. 22
h. Class .. 23
i. Process 23

V. Classes and Messages 23
1. The Message 'new' 23
2. Class Descriptions 23
3. Example: Class Probability 24
4. Example: Class Uniform 25
5. Messages to Uniform and Probability 26

iii

6. Pseudo-variables 'self' and 'super' 28
7. Returned Values 29

VI. Simulation Example 30
1. Introduction 30
2. Background of Graves Registration 30

a. Description of Service 30
b. Organizations and Equipment.................. 32
c. Doctrine 32

VII. GRREG Queuing Network 35
1. Introduction 35

a. Definitions 35
b. Network Structure 35

2. Top Level Network 36
3. Intermediate Level Networks 37
4. Parameters for Basic Level Queues 39

a. Arrival Parameters 39
b. Service Parameters 39
c. Queue Discipline 40

VIII. Code Details...49
1. Running the Simulation 49
2. Global Variables 50
3. The Life of a Worker 51

a. Start Up 51
b. Scheduling Tasks 52
C. Task Priorities 54

IX. Conclusions .. 63

X. Summary ... 63

REFERENCES ... 64

APPENDIX: Source Code .. 65
Introduction .. 67
Class Body .. 72
Class Clock ... 74
Class CollectionClass 77
Class CollectionPoint 79
Class CpTrucks 84
Class DemonTask 101
Class Environment 102
Class GenTruck 103
Class GlobalData 105
Class Identity ... 106
Class IdleTask 108
Class IntermediatePoint 110
Class Obj ... 117
Class Probability 118
Class ReStart .. 119
Class RestartTools 123

iv

Class Simulation 126
Class SuperReStart 127
Class Task 130
Class TemporaryCemetery 131
Class Truck .. 143
Class Uniform .. 145
Class UserAccess 146
Class UserData 147
Class Worker .. 149
Class GenericTasks 152

DISTRIBUTION LIST .. 161

A<.

..

. I AccesSion For_

DTIC
DC12 1986

3,
1 I;7

i

,- ,

VJ'" ,

LIST OF ILLUSTRATIONS

Figure 1. Top Level Network 34

Figure 2. Example High Level Network 36

Figure 3. Initial Collecting Point Task Network 43

Figure 4. Intermediate Collecting Point Task Network 44

Figure 5. Temporary Cemetery Task Network 45

vii

LIST OF TABLES

TABLE 1. Task List Initial Collecting Point 40

TABLE 2. Task List Intermediate Collecting Point 41

TABLE 3. Task List Temporary Cemetery 42

Ai

ix

LIST OF EXHIBITS

Exhibit 1. Smalltalk Classes 14

Exhibit 2. Source Code for Tasks 46

Exhibit A-I. GRREG Class Hierarchy 68

Exhibit A-2. Class Descriptions 69

.X

I. Introduction

Simulation is a powerful and widely used analytic tool. It
is often the only useful tool for problems that defy mathematical
formulation. There are many situations which cannot be solved
mathematically due to either the stochastic nature, or to the
complexity, or to the interactions of the elements of the model,
and simulation can often be used to obtain relevant answers.

.An essential part of any simulation is a representation of
the system under study. This representation leads to the con-
struction of a computer program that "describes" the model to be
studied, and there are several commercial simulation packages on
the market, including SIMSCRIPT, GPSS, SLAM, SIMULA, and GASP
that have been widely used.

Object oriented programming has become increasingly popular
in the 1980's. Object oriented languages have been used success-
fully in such areas as simulation, systems programming, graph-
ics, and Artificial Intelligence. SMALLTALK is an object
oriented language, developed by Xerox, that has features particu-
larly suited to simulation.

The purpose of this paper is twofold: the first is to
acquaint the reader with the concept of object oriented program-
ming; the second is to describe how the language SMALLTALK was
used for a simulation application for the US Army.

The paper is organized in several parts. Thapter II
discusses the history and basic features of object oriented pro-
gramming. Chapters III- V describe the syntax of the SMALLTALK
language. Chapters VI-VIII describe how SMALLTALK was used in a
simulation for the US Army Quartermaster School, and chapters IX
and X contain conclusions and a summary.

II. Object Oriented Programming

This chapter will discuss some of the generic features of
object oriented programming, starting with a brief history, and
then explaining some of the key features including objects, mes-
sage passing, and inheritance. Much of the latter discussion is
based on the article "Object Oriented Programming: Themes and
Variations".

[1

1. History

T~e roots of oblect oriented programming can be traced to
SIMULA , a simulation language developed by Sperry Rand Cor-
poration. Although other systems have shown some object oriented
tendencies, the explicit awareness of the idea, (including the
term "object oriented"), ca~e from the Smalltalk effort at
Xerox. The language SMALLTALK is the first major interactive
graphic based implementation of object oriented programming.
Many key concepts of object oriented programming can be seen in
a variety 5 of otter languages today. Frame based AI languages
such as KEE , FRLO and UNITS use inheritance of properties
and/or values. Objects and messagg passing occur in several LISP
dialects: T XLISP, COMONLOOPS.

1. Stefek, Mark and Bobrow, Daniel. "Object-Oriented Program-
ming: Themes and Variations," AI Magazine, Winter 1986,
pp. 40-62.

2. Dahl, O.J. and Nygaard, K. "SIMULA - An Algol Based Simula-
tion Language," Comm. ACM, No. 9, 1966, pp. 671-678.

3. Rentsch, Tim. "Object Oriented Programming," Dept. of Com-
puter Science, Working Paper, UCLA, n.d.

4. Goldberg, Adele and Robson, D. "Smalltalk-80: The Language
and its Implementation," Addison-Wesley, 1983.

5. Fikes, R. and Kehler, T. "The Role of Frame-Based Represen-
tation in Reasoning," Comm. ACM, Vol. 28 No. 9, 1985, pp.
905-920.

6. Goldstein, I.P. and Roberts, R.B. "NUDGE, A Knowledge-Based
Scheduling Program," IJCAI-1977, pp. 257-263.

7. Stefik, Mark. "An Examination of a Frame-Structured
Representation System," IJCAI-1979, pp. 845-852.

8. Rees, J.A., Adams, N.I., and Meehan, J.R. "The T Manual,"

Yale Univ. Technical Report, Jan. 1984.

9. Bobrow, D.G., Kahn, K., Kiczales, G., Masinter, L.,Stefik,
M. and Zdybel, F. "CommonLoops: Merging Common Loops and
Object- Oriented Programming," ISL-85-8, Xerox PARC, Aug,
1985.

2

2. Objects and Messages

The common theme in object oriented languaqges is objects.
Objects possess properties of procedures (funccions, subroutines)
and data since they perform computations and store information.
This dual role contrasts with procedural languages such as C,
FORTRAN, and PASCAL which separate procedures from data.

Objects communicate by sending messages to other objects.
When an object receives a message, it typically performs some
action. The action might include numerical computations, storing
or updating local information, or sending further messages. Mes-
sage passing can result in a kind of indirect procedural call.
Instead of calling a procedure to compute some value, one sends
an object a message to perform some computation.

The actions an object takes when it receives a message are
called its method for that message. A method roughly corresponds
to a procedure in ordinary programming languages.

3. Classes

Similar objects can be grouped to form an entity called a
class. A class represents a generic kind of object, and can be
thought of as a pattern or template for that kind of object. The
real numbers might be grouped into a class, say class Reals.
Rather than specifying the behavior of each real number, one only
needs to define how an arbitrary member of class Reals will
respond to various messages. To carry this further, the classes
themselves can be objects, and classes can be grouped to form a
hierarchy of classes. For example the class of Numbers might
contain Reals and Imaginaries, and Reals could have subclasses
Integers and Floats.

4. Inheritance

With a hierarchy of classes, an object in one class can
inherit the behavior of objects in its superclasses. This has
several important consequences. First, it greatly simplifies the
task of specifying how an object will respond to a message. Con-
tinuing with the Numbers example, if the class Reals has a method
(procedure) for the message 'isPositive' (i.e. "is this a posi-
tive number"), then 'isPositive' need not be repeated in class
Integers nor in class Floats, since each will inherit all methods
in its superclasses. Thus one can easily define classes that are
"nearly alike", since inheritance eliminates the need for dupli-
cating redundant information.

3

ism10.

5. Data Abstraction

The idea behind data abstraction is that of defining a pat-
tern or template for objects. Objects can then be declared to
be of a particular pattern and can inherit all the attributes and
behavior defined by the pattern. As in Simula, such a pattern is
called a class. (cf. the term package is used in Ada). Data
abstraction allows individual objects to inherit the properties
of the classes to which they belong.

Data abstraction localizes (and conceals) the details of an
object. Conceptually, each class of objects resides on its own
machine or computer, and objects communicate with each other only
by passing messages. In effect, the objects partition the
system's memory into disjoint blocks. Since all objects in a
class have the same properties, the code for a class can be exam-
ined once to identify those properties. If a change is neces-
sary, it need be made only once in the class definition rather

*. than once for each object in that structure. Thus data abstrac-
tion localizes (and conceals) the details of generating and mani-
pulating objects.

The purpose of data abstraction is to permit the use of
objects without any knowledge of the details of implementation.
An example of data abstraction in our simulation is the class
Queue. The user sees such operations as 'addTo' or 'rioveFrom'
or 'length' and need only know their visible behavior. Hidden
from the user are the details of how a queue is stored inter-
nally, or how the messages are implemented.

III. Introduction to Smalltalk

This and the next two chapters describe some of the syntac-
tical features of SMALLTALK that are useful in a simulation
environment, and many useful examples are provided to give a more
concrete understanding of the language.

Smalltalk is an object oriented language. The basic entities
of the language are objects. Objects have a private memory and
are capable of sending and receiving messages. When an object

10. Cohen, A. Toni. "Data Abstraction, Data Encapsulation, and
Object Oriented Programming," Dept. of Computer and
Information Sciences, Working Paper, Univ. of Delaware,
n.d.

11. Shankar, K.S. "Data Structures, Types, and Abstractions,"
Computer, April, 1980, pp. 67-77.

!4

P......................................

receives a message, it typically performs some sequence of opera-
tions. For example, in Smalltalk, numbers are objects which can
respond to several kinds of messages, including 'abs', 'exp',
'gamma', and 'in'. The following table gives a few of these mes-
sages and their meaning.

Message Meaning

abs absolute value
exp e raised to the power
gamma gamma value
in natural logarithm
reciprocal the arithmetic reciprocal
sign -1 or 0 or 1 depending on

whether the object is negative,
zero, or positive

sqrt square root if the object is
positive

1. Syntax and Examples

The syntax of a Smalltalk expression is:

object message <optional arguments>

where object is the receiver of the message, and the message may
contain optional arguments.

For example, the number 3 is an object and it can respond to
various messages. Thus to compute the square root of 3, one
would send the message 'sqrt' to the object '3'.

Expression Result

3 squared 9
3 sqrt 1.7320
3 gamma 2
3 reciprocal 0.3333
3 sign 1

Some messages such as +' '-' '*', and / have arguments.
Thus to add 3 and 4 together, one would send the object '3' the
message '+' with the argument 141.

4,.

I

5

~ .;*,' *. %~Q.~Y.;.$ me

Expression Result

3+4 7
3 -2 1
3*5 15
3/6 .5

Numbers can also receive messages concerning magnitude, e.g. '<'
'>1 '=1 and 'max:'

Expression Result

3 < 2 false
3 = (6 / 2) true
3 max: (4 max: 5) 5

On the first line, the object 3' is sent the message '<' with
the argument '2'. The result is the object 'false'. In the
second line, the object '3' is sent the message '=' with the
argument '(6 / 2)'. The result is the object 'true'. The last
line is evaluated from right to left. The object '4' is sent the
message 'max:' with argument '5', and the result is the object
'5'. Then the object '3' is sent the message 'max:' with the
object '5'. The result is the object '5'.

Note that Smalltalk contains two boolean objects, 'true' and
'false'. These two objects can receive messages such as: I&' and
'j' ,which represent "and" and "or" respectively.

Expression Result

(3 < 4) & (1 > 5) false
(3 < 4) I (1 > 5) true

On the first line, the object t3 < 4' is sent the message '&'
with argument '1 > 5'. Now '1 > 5' will return 'false', and '3 <
4' will return 'true', so that when 'true' is sent the message
'&' with argument 'false', the overall result will be 'false'.

'.

4: 6

2. Objects

An object is a basic entity in Smalltalk. In fact, every-
thing is an object in Smalltalk. To completely describe an
object one must specify:

1. its private memory,

2. the messages it can receive, and

3. what it does when it receives a legal message.

Each object is capable of carrying out a certain set of opera-
tions. The nature of the operation depends upon the type of
object. Objects representing numbers compute arithmetic func-
tions. Objects representing data structures store and retrieve
information.

In Smalltalk each integer is an object and can respond to
messages such as '+' and '-' and '*' and '/' to name a few.
Other examples of objects include:

numbers
character strings
sets
queues
dictionaries
arrays
rectangles
files
i/o streams

3. Classes

To simplify the description of objects, Smalltalk allows
similar objects to be grouped together to form a class. All
objects in the class have the same type of private memory and
respond to the same messages in a similar way. Consider the
integers:

...- 3 -2 -1 0 1 2 3 ...

These objects are grouped together to form the class Integer.
All objects in the class Integer respond in a similar way to the
same set of messages, such as '+' '-' '*' or 'I'

A class can be thought of as a template or blueprint
describing all objects in the class. The template must specify:

1. what private memory the object has

7

2. the set of messages the object can receive

3. what operations the object performs when it receives a
legal message.

Note however that defining a class does not create any objects in
that class. It merely specifies what a certain group of objects
look like, if they are ever created. To actually create an
object, one must send the message 'new' to the appropriate
class.* For example, suppose one wants to create a vector of
size 5. One would send the message 'new: 51 to Array.

Array new: 5

Since in practice one usually wants to refer to this array by
some convenient name, say v, one would probably use the following
assignment statement instead of the above.

v <- Array new: 5

This has now created an object v which is a member of class
Array. Some examples of its behavior are shown below.

Example Result

v size 5
v print #(nil nil nil nil nil)
v at: 1 put: 3 3
v print #(3 nil nil nil nil

When v gets the message 'size', it returns the object '5', and
then when it gets the message 'print', it returns the string
shown on the second line. The # sign indicates an array, and its
contents are given in parentheses. Since no one has yet put
anything into v, its elements are all undefined objects, textu-
ally represented by 'nil'. On line 3, the object '3' is placed
into position '1', and then v is printed again.

• There are a few exceptions to this, e.g. Numbers and Symbols
have already been created when Smalltalk is started up.

8

4. Subclasses and Superclasses

Smalltalk comes with a rich hierarchy of predefined classes,
some of which will be described in the next section. The user
can define his own additional hierarchy of classes to fit
specific applications, and some examples will be presented later.

One class can be a subclass of another, in which case the
subclass inherits all the memory and messages from the super-
class. Consider two classes, A and B, where B is a subclass of
A, as indicated below.

Class A
Class B

One also says that A is a superclass of B.

Suppose one declares an object, say b, to be a member of
Class B:

b <- B new

Now suppose one sends a message to b:

b 'anymessage'

If the description of Class B contains a clause for
'anymessage', then b will undertake the appropriate action as
defined in its class. If on the other hand, 'any_message' is not
a legal message in Class B, the description of Class A will be
searched for 'anymessage'. If it is there, then b will execute
the operations as defined in Class A. If, however, it is not
there, then the search for 'anymessage' continues up through all
superclasses of A. (If the search fails, then an error exists,
and the undefined object 'nil' is returned). Note that this
search strategy implies that messages can be redefined in sub-
classes. Any message defined in a subclass will override any
definition given in a superclass.

5. Pseudo-variables

A pseudo-variable is a name that refers to a Smalltalk
object, but unlike a regular variable it can not appear on the
left hand side of an assignment statement. Some pseudo-variables
in the system are constant and always refer to the same object:

9

--- -. *%u - , f .-(" . ,.' .•% . "- h-- . ., • , >

Pseudo-variable Meaning

nil refers to a special undefined
object

true refers to an object representing
logical truth

false refers to an object representing
logical falsity

There are two other pseudo-variables 'self' and 'super' whose
values change depending on where they occur. These two will be
described later.

6. Messages

Objects send messages to other objects or to themselves.
The only way an object can interact with another is through mes-
sages. The general syntax for messages is:

object message <optional arguments>

The object is called the receiver of the message. The message
may include optional arguments. The syntax can be divided into
three cases.

1. Messages without arguments

2. Messages with keyword arguments

3. Arithmetic messages

a. Messages without arguments. The simplest form for a
message is:

object message

Examples include:

4 sqrt
4 squared
4 abs
4 print

b. Messages with keyword arguments. The general form for
messages with keyword arguments is:

10

object keywordl: argumentl keyword2: argument2 ...

The receiver of the message is 'object'. Keywords are identified
by a trailing colon. A message may contain several

keyword: argument

pairs. Examples of messages with keywords are:

v <- Array new: 5
v at: 3 put: 0.444

c. Arithmetic messages. The third type* of message occurs
mainly in arithmetic expressions. Examples are

3+4
sum - 1
index <- bound

7. Assignments

A constant will always refer to the same object, but a vari-
able name may refer to different objects at various times. An
assignment expression has the form

variable <- expression

The object referred to by the variable is changed when the
expression is evaluated. For example,

limit <- 19
reportTitle <- 'Smalltalk Report'
sum <- 3 + 4

8. Returned Values

A message provides for two-way communication. The message
is sent to the receiver along with any arguments, and the
receiver performs certain operations. In addition, the receiver
also returns an object to the sender of the message. If the

* This syntax is preferable to the form given above, e.g. 3 +:
4.

1i

message occurred in an assignment statement, then the returned
object will be the new value of the variable in that assignment
statement. Thus the expression

sum <- 3 + 4

makes 7 the new value of the variable named sum. Even if no
information needs to be communicated back to the sender, a
receiver always returns an object, and this tells the sender that
the response to the message is complete.

9. Blocks and Arguments

A block consists of a sequence of expressions surrounded by
square brackets, and blocks are used in many of the control
structures in the language. A block can be thought of as a
deferred set of actions to be performed at some later time. Syn-
tactically, a block is an object and can send and receive mes-
sages. When a block expression is encountered, the statements in
the brackets are not executed immediately; rather they are remem-
bered. The value returned is an object that can later execute
the expressions when sent a message to do so. The execution of
the block will take place when the block receives certain mes-
sages, such as 'value'. For example,

-* amount <- amount + 1

and

[amount <- amount + 1] value

and

b <- [amount <- amount + 1]
b value

all have identical effects.

One example of simple control structure is repetition or
looping, accomplished by sending the message 'timesRepeat:' to an
Integer. The Integer will respond by sending the message 'value'

* to the block as many times as it own value indicates. Thus,

4 timesRepeat: [amount <- amount + 1]

is equivalent to

12

temp <- [amount <- amount + 1]
temp value
temp value
temp value
temp value

Blocks may have one or more arguments specified by identif-
iers preceded by colons at the beginning of the block. The gen-
eral form for a block with one argument is:

[:argument I one or more expressions 3

Consider the following example.

sum <- 0
b <- [:x sum <- sum + x 3

To add 5 to sum, one sends the message 'value: 5' to b:

b value: 5

A block may have more than one argument, as shown in the example
below.

[:key :value v at: key put: value 3

The arguments first appear preceded by colons, and then after the
vertical bar, they are used without colons.

10. Conventions

The names of objects begin with small letters, while the
names of classes begin with capital letters. Also the names of
messages usually begin with small letters. This convention is
enforced by the language. Note also there is a convention to run
words together, capitalizing all but the first to enhance reada-
bility. For example,

myNewObject

rather than

mynew object

This convention is of course not enforced by Smalltalk.

13

IV. Predefined Classes in Smalltalk

This chapter covers some of the predefined classes in
SMALLTALK, and the casual reader may wish to skim this material.
The following sections refer to the chart given below in Exhibit
1. This chart lists many of the predefined classes in SMALLTALK.
The subclass structure is indicated by indenting to the right.
For the readers convenience, portions of the chart under discus-
sion will be reproduced close by the written dialog, and an arrow
will highlight which class is under discussion.

Exhibit 1. Smalltalk Classes

Object
UndefinedObject
Symbol
Boolean

True
False

.Magnitude

Char
Number

Integer
Float

Radian
Point

Random
Collection

Bag
Set
KeyedCollection

Dictionary
Smalltalk

SequenceableCollection
Interval
LinkedList
File
ArrayedCollection

Array
String

Block
Class
Process

14

1. Object

Since everything is an object in SMALLTALK, at the top of
the list there is the class of all objects whose name is Object.
The class Object has several subclasses. The first three are
called UndefinedObject, Symbol, and Boolean. By convention, the
names of classes begin with capital letters, and the objects
within the class begin with small letters.

a. Undefined Object. This class has only one member,
denoted 'nil', and it is used to represent undefined values. By
default, SMALLTALK initializes all objects to 'nil'. Also, 'nil'

is the object returned in an error situation. For example, the
expression

true sqrt

would return 'nil'.

b. Symbol. This is the class used to represent the print
names ot objects in the system. Its members are created automat-
ically by SMALLTALK.

c. Boolean. This class has two subclasses: True and False.
Class True has only one member, 'true', and class False has only
one member, 'false'.

------- Exhibit 1. (Partial)-------

Object
UndefinedObject
Symbol
Boolean

True
False

=> Magnitude
Char
Number

Integer
Float

Radian
Point

d. Magnitude. The next class to be discussed is Magnitude.
This is the class of all objects possessing a linear ordering.
All messages in this class are defined in terms of the basics,

'' = and '>'

15

Examples. Result.

3 < 5 true

Class Magnitude has several subclasses as seen above, and
Smalltalk automatically creates all members of the subclasses
shown.

(1) Char. Class Char contains the objects represent-
ing single ASCII characters. They are written by preceding the
character desired with a dollar sign, for example: $a $B $4

(2) Number. Class Number contains the two subclasses:
Integer and Float which represent integer and floating point
numbers respectively.

(3) Radian. Class Radian is used to represent radi-
ans. Only radians will respond to messages such as 'sin' and
'cos'. Numbers can be converted to radians by passing them the
message 'radians'. Similarly radians can be converted to numbers
by sending them the message 'asFloat'. Radians are normalized to
be between 0 and 2*pi.

Examples Result

0.5236 radians sin 0.5
0.5 arcSin asFloat 0.5236

(4) Point. Class Point contains pairs of numbers
representing coordinates. They are represented by placing the
@ sign between two numbers.

Examples Result

(0@0) dist: (3@4) 5.0
(1@2) + (3@4) (4@6)

16

............................

-------- Exhibit 1. (Partial)-------

Object
UndefinedObject
Symbol
Boolean
Magnitude

=> Random
Collection

e. Random. The class Random provides protocol for random
number generation. Sending the message 'next' to a member of
Random results in a Float between 0.0 and 1.0 randomly distri-
buted.

Example Result

ran <- Random new
ran next 0.683
ran next 0.466
ran next: 3 #(0.095 0.166 0.745)

The first line creates 'ran' as a member of class Random. Since
no seed is specified, the default one will be used. The message
'new randomize' sent to Random will create an object with a ran-
dom seed. Sending the message 'next: 3' generates three random
numbers.

-------- Exhibit 1. (Partial)-------

Object
Magnitude
Random

=> Collection
Bag
Set
KeyedCollection

Dictionary
Smalltalk

SequenceableCollection

* 17

f. Collection. This class represents groups of objects,
such as Sets or Arrays. The different types of forms in class
Collection are distinguished by several characteristics includ-
ing:

1. whether the size of the collection is fixed or unbounded,

2. whether the collection is ordered,

3. the methods for retrieving and inserting objects into the
collection.

For example, an Array is a collection with a fixed size and an
ordering indexed by integer keys.

(1) Bag/Set. Bags and Sets are unbounded unordered
collections, and their elements are not indexed by any keys.
The difference between a Bag and a Set is that an element can
occur repeatedly in a Bag but not in a Set. For example, suppose
b is an object in class Bag containing four elements:

Example result

b print Bag(ball bat glove bat
b asSet print Set(ball bat glove)

------- Exhibit 1. (Partial)-------

Object
Collection

Bag
Set

=> KeyedCollection

Dictionary
Smalltalk

SequenceableCollection

(2) KeyedCollection. Elements in this collection are
pairs of the form:

key value

In the case of class Array, the key is called the index and is

i. 18
V,

usually an Integer. The message

at: key

will return the item in the collection having the given key. The
message

at: key put: value

is used to insert an item, and

removeKey: key

is used to delete an item.

(a) Dictionary. Class Dictionary is a subclass
of KeyedCollection. Both the key and value portions of an ele-
ment can be any object, although commonly the keys are instances
of Class Number or Symbol. In the example below, a Dictionary of
opposites called 'opp' is created.

Example Result

opp <- Dictionary new
opp at: #hot put: #cold
opp at: #stop put: #go
opp at: #big put: #little

opp size 3
opp print Dictionary

#hot @ #cold
#stop @ #go
#big @ #little)

opp at: #big #little

(1) Smalltalk. The class Smalltalk contains
one member 'smalltalk'. This object serves several functions.
First, it provides global communication between all objects.
Second, it is used to modify various parameters used by the
Smalltalk system. Third, it can pass commands to the Unix shell.

19

------- Exhibit 1. (Partial)-------

Object
Collection

Bag
Set
KeyedCollection

Dictionary
Smalltalk

=> SequenceableCollection
Interval
LinkedList
File
ArrayedCollection

Array
String

(b) SequenceableCollection. This class contains
objects in KeyedCollection that are indexed by integer keys.
Since there is a definite fixed order for elements in this class,
it is possible to refer to the first and last elements of an
object. Elements in this class also respond to the messages
'sort' which will return the object sorted from smallest to
largest, and 'reversed' which will return the object with the
elements in reverse order.

(1) Interval. The members of this class
represent sequences of numbers in an arithmetic sequence, either
ascending or descending.

Expression Meaning

(1 to: 5) #(l 2 3 4 5)
(l to: 5 by: 2) #(l 3 5)
(5 to: 1 by: -2) #(5 3 1)
(.3 to: .7 by: .1) #(0.3 0.4 0.5 0.6 0.7)

Used with the message 'do:', a control structure similar to "do"

or "for" loops can be obtained. For example:

(1 to: 10) do: [:x I x print]

will print the integers 1 through 10.

(2) LinkedList. Objects in this class
represent stacks or queues. The objects have a fixed order, but
no definite size. Elements can only be added or removed from the

20

A L#.

ends, i.e. either the beginning or the end. An example of a
queue is a line of people in a bank. People enter the bank and
join the end of the line, and when their turn comes for service
they leave the beginning of the line. An example of a stack is a
pile of letters on a desk. When a new letter comes in, it goes
on the top of the pile, and letters are (usually) removed from
the top.

Message Meaning

addFirst: object the object is added to the
beginning of the collection

addLast: object the object is added to the
end of the collection

removeFirst remove the first element
removeLast remove the last element

(3) File. The elements of class File are
stored on an external medium, typically a disk. Objects in this
class respond to messages such as:

open: filename'
read'
write: object'

------- Exhibit 1. (Partial)-------

Object
Collection

KeyedCollection
SequenceableCollection

Interval
LinkedList
File

=> ArrayedCollection
Array
String

(4) ArrayedCollection. The class Array-
edCollection contains two subclasses: Array, and String. The
difference between them is that while the values in class Array
can be any objects, in class String they must be from class Char.
Textually, arrays are represented by a pound sign preceding the
array, and strings are represented by placing single quotes
around the entire string.

21

Example Result

a <- #(10 12 14)
a size 3
a at: 3 14
b <- 'string'
b size 6
b at: 2 put: $p 'spring'

--- Exhibit 1. (Partial)-------

Object
Collection

=> Block
Class
Process

g. Block. Blocks are used in many control structures in
the language. A block represents a deferred sequence of opera-
tions. Textually they are represented by square brackets sur-
rounding a sequence of Smalltalk expressions. Blocks are objects
in the system and can respond to messages. When a block is
encountered, the statements in the brackets are not executed
immediately, rather an object is created. The sequence of opera-
tions that a block describes will be performed when the object
receives the message 'value'. For example,

Example Result

increment <- [index <- index + 1
index <- 0
increment value 1
increment value 2

Blocks can be passed arguments with the message 'value: object'.

For example,

[:x I x + 3) value: 6

will result in the value 6 being passed in for x. The result of
the block will hence be 9. The expression ":x" appearing in theblock says that "x" is the parameter in the block.

22

VA r VI,*

h. Class. Users can define their own classes by sending
messages to Class. The message consists of the name of the new
class followed by its definition. For example, a new class
called Probability has been defined for use in our simulation
studies. The actual form of the class will be discussed in the
next chapter, but the definition starts with

Class Probability
[<definition of this class>]

i. Process. Processes are created by the system or by
sending the message 'newProcess' or 'fork' to a block. They can
not be created directly by the user.

V. Classes and Messages

The previous chapter dealt with the hierarchy of predefined
classes in SMALLTALK. This chapter starts by examining how new
classes can be created, (specifically the class Probability that
was introduced above), and then covers two pseudo-variables, self
and super, and ends with an example illustrating how SMALLTALK
handles returned values.

1. The Message 'new'

Objects are the basic components of the Smalltalk system.
Messages allow interactions between the components of the system.
Every object in Smalltalk is a member of a class. The members of
a class all have the same message interface: the class describes
how to carry out the operations available through that interface.

Objects are created by sending messages to classes. Most
classes respond to the message 'new' by creating a new member of
themselves. For example,

Array new: 5

returns an object that is a member of class Array having 5 ele-
ments. The object created can respond to the same messages as
any other member of class Array.

2. Class Descriptions

The description of a class has five parts.

1. the name of the class

2. the class hierarchy

• .. ,.

23

nl &

3. the private memory of each element

4. the set of legal messages understood by the class, and

5. the operations performed when a legal message is received.

Suppose one wants to define a class called Probability, which
will be used to generate random numbers from various probability
distributions such as Normal and Uniform. The various probabil-
ity distributions will be subclasses of Probability as seen
below.

Object
Probability

Uniform
Normal
Binomial
Exponential

3. Example: Class Probability

The definition of Probability starts with:

Class Probability :Object

Our new class will generate random numbers and pass them to an
appropriate subclass. One local variable, say randnum, will be
needed to hold the random number generated. The list of local
variables is placed between vertical bars.

Class Probability :Object
I randnum I

Notice that spacing, tabs, and carriage returns may be used
freely to improve readability.

The rest of the class definition is a block. The block con-
tains pairs of the form:

message expressions

These pairs are separated by vertical bars.

Members of the class Probability will respond to two mes-
sages: 'initialize' and 'next'. Members of class Probability
must first receive the message 'initialize', which will create an
object for random number generation. The message 'next' will
pass a random number to an appropriate subclass for processing.
Consider the complete definition of class Probability. (Recall

24

that since Probability is a subclass of Object, it inherits all
the messages defined in Object, so they need not be listed again
unless the user wishes to redefine them.

Class Probability :Object
I randnum I

initialize
randnum <- Random new.

I next
^self sample: randnum next.

]

As mentioned earlier, any member of Probability must first
receive the message 'initialize' which creates a new instance of
the random number generator (with default seed). That random
object will be called randnum. The message 'next', which will
pass a random number to a subclass, will be fully described
later. Note that the symbol '-1 means return the object created
by this expression, and that 'self' refers to the object that
received the message (in this case the object that received the
message 'next'). The exact behavior of this message will become
evident when the subclass Uniform is presented.

4. Example: Class Uniform

Now that one has defined Probability, one can add subclasses
for various probability distributions. The easiest one is Uni-
form. This class will generate uniform random numbers on an
interval [a,b]. Since class Random generates uniform random
numbers on the interval [0,1], class Uniform need only ask Proba-
bility for such a number, say x, and then perform the transla-
tion:

a+ (x* (b- a))

A member of class Uniform requires two local variables, a
and b, to hold the endpoints, and it will respond to two mes-
sages: 'from: start to: stop' and 'sample: x' The first will
store the endpoints a and b, and the second will ask Probability
for a random number and them perform the above translation. The
definition of Uniform follows.

25

Class Uniform :Probability
Ia b I

[from: start to: stop
(start < stop)

ifTrue:
[a <- start.
b <- stop.]

ifFalse:
[self error:

"illegal interval"

sample: x
A a + (x + (b -a)).

5. Messages to Uniform and Probability

At this point, two new classes have been defined. The class
definitions are templates specifying how members of the class

V. will behave. To understand the behavior of a member of Uniform
(and of Probability), an example will be traced through in
detail. Suppose a study involves a task whose duration is Uni-
form on the interval [5 9].

First one creates a member of class Uniform:

u <- Uniform new

Next, one initializes:

u <- initialize

Since class Uniform does not respond to the message 'initialize',
but its superclass Probability does, the message 'initialize' is
sent to Probability. A random number generator 'randnum' will
be created.

To generate uniform random numbers on the interval [5 9],
perform the following:

u <- from: 5 to: 9

'rhe message 'from: start to: stop' would respond with start = 5
and stop = 9. The test '(start < stop)' is either true or false,
and one of the two blocks is executed. Since 5 is less than 9,
Uniform will store 5 and 9 into a and b respectively.

The message

u next

26
4-.

4- 2

will now generate a uniform random number in the interval [5 9].
Again, Uniform does not respond to the message 'next', but Proba-
bility does. So the expression

A self sample: randnum next

is evaluated. The evaluation starts at the right with:

randnum next

Now randnum is a member of class Random, so sending it the mes-
sage 'next' will result in a random Float in the interval [0 11.
This random object then becomes the argument for the message
'sample:'. Thus the message:

sample: randnum next

is sent to 'self'. The pseudo-variable self refers to the origi-
nal receiver of the original message, which in this case is 'u'.
(Recall that the original message was ' u next '). In effect
then, the message becomes:

u sample: < a random object>

Now u will respond to this message by evaluating

A a + (x + (b - a))

The random object generated above will be substituted for x, and
a and b have been assigned values 5 and 9, so the overall effect
is to create a random object uniform on the interval [5 9].

Now that the object has been created, where does it go? The
'A^ means to return the object generated by the expression, so

that the message

sample: x

in Uniform will return that uniform number. This object is then
the value of the expression

self sample: randnum next

in Probability. The '^' on that line returns the object from the
message next. (Note that if the two '^' had not been used, the
random object would have still been created, but not passed
back). Thus

u next

will generate the desired uniform random number.

Other examples of user defined classes will be presented
later.

27

6. Pseudo-variables 'self' and 'super'

Messages can be sent to the pseudo-variables self and super.
When a message is sent to self, it will go to the original
receiver of the original message. Consider the following example
in which two classes, One and Two, are defined. Class Two is a
subclass of One.

Class One :Object
[test

1 print.
I pass

self test.

Class Two :One
[test

2 print.

One creates members of each class.

memberl <- One new
member2 <- Two new

Then messages are sent to the new objects.

Expression Result
-ember- test-1

memberl test 1
•member2 test 2

memberl pass 1
member2 pass 2

Sending the message 'test' to either memberl or member2 will
print a 'I' or a '2' as one would expect. Sending the message
'pass' to memberl will cause the expression

self test

to be evaluated. The variable self refers to memberl, so the
message 'test' is sent to memberl and a 'I' is printed. However,when 'pass' is sent to member2, since members of Class Two do not

respond to that message, it goes instead to its superclass, which
is class One. Again, the expression

28

N N

self test

is evaluated, but this time the variable self refers to the ori-
ginal receiver, member2. Thus a '2' is printed.

The variable super refers to the superclass of the class
containing the line in which super was used.

7. Returned Values

When an object receives a message, its class description
will tell it what operations to perform. When it finishes pro-
cessing the message, it will always return some object. The
default value is the name of the receiver. If some other object
is needed, then one or more return expressions 'A' should be
included in the class description. For example,

Class A
[compute

3+4

Class B
[compute

A3+4

One creates members of both classes,

a <- A new
b <- B new

and send the message 'compute' to each.

Example Result

a compute a,
b compute 7

When object 'a' gets the message 'compute', it calculates '7',
but by default returns its name.

29

VI. Simulation Example

1. Introduction

In 1984, the US Army Quartermaster School commissioned the
Ballistics Research Laboratory (BRL) to conduct a Graves Regis-
tration (GRREG) study. The thrust of this study was to evaluate
the GRREG requirements of the future battlefield and analyze the
ability of the GRREG system to meet these requirements. The study
provided 1) a base line analysis of the ability of the present
system to handle conventional and contaminated remains, and 2) an
analysis of several alternatives, including changes in force
structure, equipment, and GRREG procedures. The recommendations
of the study are intended to provide the Logistics Community a
direction for changes in graves registration doctrine, pro-
cedures, and organizations. A large computer simulation was
written in Smalltalk in order to perform the analysis.

2. Background of Graves Registration

a. Description of Service. The Graves Registration Program
provides for essential search, recovery, collection, and disposi-
tion of the remains of deceased US, allied and enemy personnel in
an area of conflict where the prompt return of remains to the
continental United States is not possible. Disposition of
remains, according to current doctrine, is by burial in temporary
military cemeteries. The Graves Registration Program is a logis-
tics function under the auspices of the Quartermaster Corps. In
a theater of operation, graves registration collection points are
established in the Brigade Support Area. Additional collection
points are established in the Division and Corps rear areas. The
temporary military cemetery is established in the COMMZ or Corps
rear. Current doctrine requires that units transport the remains
of deceased soldiers to the nearest collection point. From there,
graves registration personnel tentatively identify the remains
and evacuate them, through intermediate collection points to the
temporary cemetery. At the cemetery, operated by a Graves Regis-
tration Company, personnel remove personal effects from the
remains for shipment to next of kin, and bury the remains.

The US Army Quartermaster Corps has responsibility for the
graves registration program. This responsibility includes the
organization of units to carry out graves registration functions,
acquisition and training of MOS 57F (Graves Registration Special-
ist) personnel, the development of requirements for new items of
equipment to support graves registration operations, and the
development of graves registration doctrine.

* The graves registration program involves four major func-
tional areas. They are search and recovery, identification,
burial and personal effects processing. All of these functions
are carried out in the theater of operations. Personal effects
are shipped to next of kin at the earliest possible time.

30

Graves registration personnel may carry out search and
recovery missions in cases where a unit is unable to recover
their dead, where a unit has been forced to bury remains in a
hasty/temporary grave site, where an aircraft has been downed, to
police the battlefield of enemy dead, or in any situation where
other units are unable to recover the remains of U.S. servicemen
from an area of operations. Search and recovery missions are time
consuming and labor intensive. These missions sometimes force
elements of a graves registration unit to operate over large geo-
graphical areas.

The identification function is carried out by graves regis-
tration personnel at a recovery site, a graves registration col-
lection point or at a temporary cemetery. Every effort is made
to completely identify remains as soon after death and as close
to the place of death as possible. Experience has shown that
timely identification is a significant factor in reducing the
number of unknowns in a conflict. All tasks associated with
documenting identifications and reporting this information will
be considered as part of the identification function in this
analysis.

All remains processed as part of a graves registration pro-
gram are buried in the theater of operations in temporary mili-
tary cemeteries. Burial is either in individually marked graves
or a common grave if mass burial procedures are in effect. Under
the graves registration program all cemeteries and grave sites in
the theater of operations are considered temporary. The program
cal~s for the eventual return of all remains to next of kin or
military cemeteries in the United States unless a permanent mili-
tary cemetery is authorized by specific legislation. Remains in
hasty/temporary graves in the theater of operations are consoli-
dated in temporary military cemeteries if possible.

Current graves registration doctrine and procedures are gen-
eral in nature and oriented toward the conventional environments
of past conflicts. Little attempt has been made in recent years
to capitalize on current technology for identifying, reporting
and processing remains.

During peacetime, the graves registration system is not
used. Peacetime manpower and fiscal constraints have forced the
Army to place graves registration units in the Reserve Component
and graves registration elements have been removed from many
active unit tables of organization and equipment (TOE). Peacetime
deaths of servicemen are handled by the current death program,
which emphasizes civilian mortuary services and contract support.
Because of this, very few graves registration personnel are in
the active force, graves registration procedures have not been
kept current and problems posed by future battlefield environ-
ments have not been addressed.

31

b. Organizations and Equipment. Graves registration assets
are organized into units ranging in size from the GRREG Battalion
to GRREG Team Augmentations. At the lowest echelon, graves regis-
tration support is provided by teams, sections and platoons
attached to supply and service companies or field service com-
panies. These GRREG elements are organized into collection points
that provide for search, recovery, initial identification and
evacuation of remains. These collection points are not organized
or equipped to perform burial. All graves registration support
to divisions is provided by augmentation to the divisional Supply
and Service Company. Divisional GRREG capability is strictly a
wartime augmentation.

The Graves Registration Company carries out the final iden-
tification of remains and operates the temporary military
cemetery where remains are buried. The Cemetery Company is also
organized to perform search and recovery missions and to operate
a collection point. Personal effects are also processed by the
Cemetery Company prior to being sent to the personal effects

N? depot for temporary storage and shipment to legal recipients.

c. Doctrine. Current doctrine for graves registration is
illustrated by the flow of remains shown in Figure 1. Units have
the responsibility of evacuating remains to the appropriate
graves registration collection point. This evacuation is normally
accomplished by using organic unit transportation assets. How-
ever, any available transportation may be utilized. Evacuation
from teams, squads, platoons and companies may be routed through
the appropriate battalion headquarters. Remains are unloaded at
each echelon in an effort to keep organic unit transportation
assets within a units' area of operation. Much of the current
GRREG organization and doctrine is dictated by transportation
requirements.

Any transportation assets may be used to evacuate remains
with the exception of ration trucks. From the losing unit, tran-
sportation will normally be organic company or battalion vehicles
and aircraft. Once the remains are in graves registration chan-

V nels, evacuation of remains becomes the responsibility of the
graves registration unit. All graves registration units have
authorized organic vehicles which may be used for evacuation of
remains; however, it must be kept in mind that these vehicles are
also required to carry out search and rescue missions, and per-
form unit administrative tasks. Evacuation of remains within
graves registration channels, therefore, depends upon requests
for nonorganic transportation and the availability of back haul
transportation assets. Doctrine provides guidelines for the
transportation of remains within the theater. Remains must be
covered at all times while being transported. Remains must be
escorted while being evacuated to insure that personal effects
are safeguarded and that the remains receive proper treatment
while enroute. The vehicle transporting remains must be covered
at all times and remains inside the vehicle should not touch each

32

other. This precludes stacking remains one on top of each other
in a vehicle and limits the number of remains that can be tran-
sported in one vehicle. Utilizing litters the maximum number of
remains that can be transported in a 2 and 1/2 ton cargo truck
under the constraints of this doctrine is 24.

Doctrine states that identification should be carried out as
soon as possible after death and as close to the scene of death
as possible. Remains recovered by GRREG personnel on a search
and recovery mission are identified at the recovery site if pos-
sible. Early identification is felt to be the key to eliminating
unknowns. Various identification media are used and doctrine
prescribes what combinations are acceptable for positive identif-
ication. It must be remembered, however, that identification
media which are used as sole source evidence of identification
may be wrong. For this reason, current doctrine stresses the use
of multiple identification sources to confirm the identity of
remains.

Burial is the only accepted disposition method for remains
under current graves registration doctrine. Remains are buried
in individually marked graves at consolidated temporary military
cemeteries in the theater of operations. The intent of current
GRREG doctrine is to discourage the use of small scattered
cemeteries and consolidate the burial of remains as much as pos-
sible. Doctrine prohibits the use of isolated/hasty graves
unless their use is absolutely unavoidable e.g. where a unit is
unable to evacuate their dead and are being forced to move. Con-
solidated cemeteries are required by doctrine for many reasons.
Consolidation makes it easier to carry out the return of remains
program and the organization and basis of allocation of graves
registration companies makes it impossible to have decentralized
burial within a theater of operations. Consolidation also makes
the care and maintenance of cemeteries easier, limits the possi-
bilities that a burial site could be lost and makes it less
likely that a cemetery would fall into enemy hands particularly
since current doctrine places temporary military cemeteries in
the COMMZ.

33

A: e , * .. A a' t!- .

CPcP

cPP

CP

.JP - x

-p

FigureC 1. To Lee Newr

34IP

VII. GRREG Queuing Network

1. Introduction

The graves registration organizations in a Corps are best
described as a network of queues where remains await processing.
These queues form networks, where the output of one becomes the
input of another. The network is rather complicated: consisting
of several hundred individual queues that are interconnected
either in series or in parallel. The network will be described
in three levels of detail, with the basic level consisting of the
individual queues, the intermediate level consisting of the three
types of collecting points (initial, intermediate, cemetery), and
the top level showing the flow from one collecting point to
another. Figure 1 illustrates the queues and networks in the
corps slice of the theater at this top level. Except for the
remains of personnel who die in the COMMZ and are brought
directly to the cemetery for processing, all remains in the
theater will pass through a minimum of two collecting points
prior to burial.

a. Definitions. The GRREG queuing network forms a directed
connected graph of arcs and nodes, (see Figure 2), with tokens
passed along the arcs through the nodes. The tokens represent
bodies or trucks, and each node represents a task to be performed
on tokens and a queue where the tokens wait their turn for pro-
cessing. The meaning of these terms depends on the level of
detail in the network. At the top level, the nodes (circles)
represent the collecting points, the arcs (lines) represent the
connecting roads, and the tokens represent the trucks carrying
bodies. At the intermediate level, the nodes represent indivi-
dual tasks from the basic task list, the arcs represent movement
from one task to the next, and the tokens represent the indivi-
dual bodies at the collecting point.

Tokens are created by a generator (source) node. Each gen-
erator node has one arc leading to a task node's queue. Here the
tokens wait their turn for processing. Examples of process
(task) nodes are unloading trucks and taking finger prints.
After the processing is completed the token travels on an arc to
the next queue. This pattern is repeated until a final (sink)
node is reached. An example of a sink node is a temporary
cemetery plot. The sink node's queues hold tokens that represent
the throughput of the GRREG services.

b. Network Structure. As mentioned before, the network can
be viewed at three different levels. The description of the
GRREG network will start at the top level with some basic defini-
tions; then move to the intermediate level and a detailed discus-
sion of the three types of collecting points; and conclude at the
basic level with an examination of the various queue parameters.

35

. .. ."

2. Top Level Network

The top level nodes are the collection points:

1. Initial Collecting Point [CP]

2. Intermediate Collecting Point [IP]

3. Temporary Cemetery [TC]

and the low level network defines these nodes in more detail. A
simple high level network example is shown below.

S .

P °...

S,.

. . Figure 2. Example High Level Network

Each generator ([gen]) creates a work load of tokens, which
~consists of trucks filled with a random number of bodies. These

tokens pass through collection point nodes on trucks until they

t i

5%

36ge

reach the Temporary Cemetery node ([tc]).

3. Intermediate Level Networks

The intermediate level networks represent the three types of
collecting points (initial, intermediate, temporary cemetery).
See Figures 3, 4, and 5. Here each token represents a truck full
of bodies. These trucks start in the field. After the drive
from the pick up point the trucks line up at the in-truck-queue.
Here a pool of workers is assigned the task of unloading the
truck. This pool contains several workers, with one or more
workers on the truck, and the remainder (in pairs) on the ground
to carry the bodies to the processing location. Here the bodies
receive an evacuation number from one of the workers. This body
is not physically moved, but is added to the the identification
and personal effects queue.

Each collection point node has a limited capability to do
processing, which is a function of the number of workers assigned
to the collection point. Each task node requires one or more
workers to perform the given task. When multiple workers are
assigned to a task node, task characteristics determine whether
the work is performed in parallel or in series. For example,
tasks like loading (unloading) trucks need workers in pairs for
each body to be loaded (unloaded) at one time, plus one worker in
the truck. Tasks like identification require only one worker per
body, while other tasks can only be done by at most one worker at
any given time. An example of the latter is filling out the con-
voy list.

Most of the arcs in the collection points and the temporary
cemeteries are simple and represent serial task queues. The
exceptions are the branching, joining, and forking of arcs at
nodes, to be explained below.

Branching occurs when a token can be put on one of several
queues after service. This happens, for example, after the body
has received an evacuation number. If the body has already been
processed through an initial collecting point, then the next task
is to check the records to be sure there are no errors in pro-
cessing up to this point. However, if the body has not been pro-
cessed then the complete identification process must be carried
out.

Forking occurs when a token is split and put on two or more
queues. An example of this is can be seen at the temporary
cemetery, where the holes in the ground are prepared while the
body goes through final processing.

Joining occurs when a node waits for all parts of a forked
token to arrive before processing continues. After the above
holes and the final processing are completed, the body is ready
for placing in the hole.

37

The nodes at the end of the arcs represent tasks to be per-
formed by workers. These nodes consist of a queue of incoming
tokens (these tokens are either trucks or bodies). This is where
the tokens wait for a turn to be processed. These nodes also
require one or more workers to do the processing to the bodies.
Some task nodes can have more than one worker at a time (e.g. n
workers can perform the ID task on n bodies), while other tasks
are restricted to one worker (e.g. the Evac task), thus only one

" body at a time. The hardest tasks for worker allocation are the
loading and unloading of the trucks, as described above, which
consume two workers per body and one or more extra workers on the
truck.

The actual processing of bodies is done at the level of

tasks. This requires that needed resources be allocated to the
task for specified time period, and then released back to the
system for other tasks to consume.

To illustrate in more detail, the following are needed by
the simulation to process a task.

1. a body

2. one or more workers to be consumed while the body is being
processed.

3. some storage for the body and the worker (this holds the
resources until the task is completed).

4. the limits on the number of workers required (as above).

5. a delay time for the execution of the task (this is the
amount of time needed to complete the task).

6. arcs for the disposition of the body for its next task.

Note that 1) and 2) are consumable resources for the simula-
tion, 3) can be forgotten until there is no more computer
resources, and 4), 5), and 6) are constraints that differentiate
the tasks.

The way these work is as follows. For each collection point
there is a fixed set of workers. These workers are allocated to
each task that meets the above needs for processing. When a task
is ready to run, the body and the worker(s) are stored in a task
object for storage in the time queue. After the delay time is
consumed by the simulation, the task is run to free its
resources. These are:

38

1. the body, which is placed on the next task's input queue.

2. the worker(s), which can get another body for this task or
start a new kind of task.

The task list for an initial collecting point is given in
Table 1. The source code for those tasks is given in Exhibit 2.
Each task contains 6 methods (startUpTask, max, min, taskTime,
prefix:, and next). The startUpTask method creates an instance
and returns the name of the individual task. The methods max and
min return the maximum and minimum number of workers for that
task, while taskTime returns the average time required for the
task. Note that prefix: echelon will return a string containing
the echelon level and the name of the task that is used for
printed reports. The message next informs the scheduler what the
worker is doing, and informs the body that it has left the task
queue and is now being processed.

4. Parameters for Basic Level Queues

The behavior of an individual queue is controlled by the
choices made for a small set of parameters. These parameters
will be examined as they apply to the various queues in the net-
work.

a. Arrival Parameters. The calling population (casualty
workload) for the GRREG model is finite; limited by the intensity
and nature of the battle and the troop population. The simula-
tion was run well past the last battle (i.e. no arrivals) to
determine the time needed to work off the backlog.

Some queues experienced only bulk arrivals, (occurring
whenever trucks arrived with bodies). Other queues had no bulk
arrivals, and some had both bulk and single arrivals.

The arrival rate for bulk arrivals changed daily and
depended upon battle conditions and troop populations in the
vicinity. For some queues, the arrival rate was the sum of the
departure (throughput) rates of one or more previous queues in
the chain.

b. Service Parameters. Each queue in the network
represents one of the tasks from the basic task list for the col-

*lection point. (See tables 1, 2, and 3). The service times for
*each task are independent and normally distributed. The number

of servers (MOS 57F workers) at each service center changes
throughout the simulation. A 'worker to task' scheduler assigns
workers to individual tasks based on several factors including
task priority and queue backlog. The worker stays only until
task completion, at which time he is reassigned to either the
same task or possible another task. Thus tasks may get no work-
ers assigned, or may get one or more workers.

39

%N

c. Queue Discipline. Queue discipline is first come, first
served, and queue capacity is assumed to be infinite. However,
for some excursions, balking was allowed at the truck arrival
queues whenever the backlog reached a critical peak. The trucks
would then proceed to the next higher echelon collecting point
and try to join the input queue.

TABLE 1. Task List Initial Collecting Point

Task Time Task
per Remain
(min)

2 Unload remains

5 Assign an evac number and record

55 Check ID tags, field medical card,
prepare statement of recognition,
record of recovery (if necessary),
inventory PE and fingerprint

10 Place remains, documents and PE
in human remains pouch and move
to holding area

5 Prepare convoy list

5 Miscellaneous record keeping

2 Load on transportation

40

---- - -

TABLE 2. Task List Intermediate Collecting Point

Task Time Task
per Remain
(min)

2 Unload remains

5 Assign evac number and record

25 Compare remains with documentation
and fingerprint

5 Move remains -to holding area

5 Record on convoy list

2 Load remains on transportation

41

TABLE 3. Task List Temporary Cemetery

Task Time Task
per Remain
(min)

2 Unload remains

5 Check evac number and PE seal

5 Move to processing area

5 Assign processing number and re -rd

15 Compare remains and PE with documentation

20 Remove clothing and examine

15 Fingerprint remains

30 Perform detailed ID; consists of anatomical,
dental, and/or skeletal charting,
photography and comparison of evidence with
records; assumed that this 30 minutes is the
time for all types of ID cases averaged over
every remain processed

5 Shroud remains

10 Prepare plates, tags and attach

5 Move remains to holding area

10 Dig grave site (mechanical digging)

10 Move remains to grave site

20 Prepare internment and plot records
and 3x5 card

30 Place remains in grave and cover (manual)

15 Prepare and ship PE

42

'V

. pack

convoylist misc

outTruckO IoadQ exit

exi

Figure 3. Initial Collecting Point Task Network

43

nTruc noaQei

evc fbd hsntbe

throug C

copr D hcI

444

evac* if body has been
through CP or I P

checkIDmv cornpareID)

FdigGrave iT C ek

5oud

moveloSite if grove site

not ready

notDugO

~lotRecor/rds

Figure 5. Temporary Cemetery Task Network

45

L -s r " '- " " '' '' w "" -. ".. " . .. ""' 2 , '". " .'', " "", . ' '' ' - ' 3 W ' '

-- -- ."-

Exhibit 2. Source Code for Tasks

[startUpTask
max number of workers allowed.
#I min number of workers required for one body.
#I taskTime return the average time required.

I prefix: echelon
I next

---------------- If there is a truck unload it."
Class Unloader :Task

startUpTask
A self.

max "number of workers allowed."
A 7.

min "number of workers required for one body."
A2.

I taskTime "return the average time required."
A2̂2.

prefix: echelon
-self name: (echelon, 'Unload'

- - - - - - - - - - - - - - - -o

" I next
self setWorking.

self body: (self unloadTruck: self).

"---------------- If there is a truck load it."
Class Loader :Task

startUpTask
A^self.

prefix: echelon
A-. Aself name: (echelon, 'Load'

I max "number of workers allowed."
^6.

min "number of workers required for one body."
A 2 .

taskTime "return the average time required."[W...,. A2.
- . next

next self setWorking.
self body: (self loadTruck: self).

-4A

A.k

------- Process to assign evacuation numbers. "
Class Evac :Task

startUpTask
^self.

I max "number of workers allowed."
Al.

Smin "number of workers required for one body."
Al.

I taskTime "return the average time required."
A5.

I prefix: echelon
Aself name: (echelon, 'Evac')

next
self setWorking.
self body: (self procEvac: self).
self reSchedule: self.

- -See who this is and process his personal effects."
Class Id :Task

startUpTask
Aself.

max "number of workers allowed."
A999.

min "number of workers required for one body."
Al.

taskTime "return the average time required"
A40.

taskClock I c
c _ super taskClock.
(self body) fingerPrint ifTrue: [c incMin: 15].
AC.

prefix: echelon
A self name: (echelon, 'Id'

next
self setWorking.
self body: (self procId: self).
self reSchedule: self.

-Pack into transport bag with PE and move to load area."
Class Pack :Task

startUpTask
Aself.

max "number of workers allowed."
A999.

Smin "number of workers required for one body."

47

A2.

I taskTime "return the average time required."
A10.

I prefix: echelon
,self name: (echelon, 'Pack')

I next
self setWorking.
self body: (self procPack: self).
self reSchedule: self.

----------------- Add him to the convoy list."
Class Dd :Task

startUpTask
Aself.

I max "number of workers allowed."
^ A l

min "number of workers required for one body."

i taskTime "return the average time required."
A5.

prefix: echelon
A self name: (echelon, 'Od'

I next
self setWorking.
self body: (self procDd: self).
self reSchedule: self.

---------------- Process other overhead items required."
Class Misc :Task

startUpTask
Aself.

max "number of workers allowed."
A999.

Smin "number of workers required for one body."
Al.

taskTime "return the average time required."
A5.

I prefix: echelon
^self name: (echelon, 'Misc')

I next
self setWorking.
self body: (self procMisc: self).
self reSchedule: self.

48

VIII. Code Details

In this chapter, parts of the code will be examined in
greater detail. The first part covers the details of starting the
simulation. The second part covers the concept of global infor-
mation in the simulation. The last part walks through the various
stages in the life of a worker, including creating a worker,
assigning a task, performing a task, and returning to idle
status.

1. Running the Simulation

The simulation is run with two commands. The first is:

s <- Simulation new startUp.

which will make an instance of the Simulation and pass in the
message startUp. This will in turn pass the message startUp to
each object in the simulation that needs to be created at time
zero. Each startUp will initialize the variables and the queues
needed for the run, along with scheduling objects to perform
operations in the future.

Each object that represents a task that consumes time is
added to the event-queue. This is called 'scheduling an event'.
Each object scheduled is placed on the event-queue. The event-
queue is a sorted list. The records of the list are the time-
to-run, which is the sort key, and the object to run.

The second command is:

s process.

This removes the first object from the event-queue and runs it.
In normal operation the message 'process' returns true as long as
there are objects scheduled to do tasks. Also the run can be
limited by the number of events run. This is the way the simula-
tion is run until there is an internal stop condition or 50
events have occurred:

[(s process) and: [(n<- n+l) < 50] J whileTrue: []

t Each task is run in three phases. In the first phase the
task gets the resources required for the task. The second phase
is the scheduling where the task is suspended for the time
required to complete the task. The last phase is to pass the
message 'next' to the object. The message 'next' causes the

49

'v -' '.'. "..,'v -.-. .. . , . .' ', ' " " '1.2 , ". -- . " -. - , -

resources to be released by the object completing a task.

2. Global Variables

One of the first things done in starting the Simulation is
to make an instance of the Class GlobalData. This in turn makes
an instance of the superClass UserData. Both are saved in the
Class UserAccess, which is a super class of each SimulationOb-
ject. The result is two objects that are global to the Simula-
tion. These two Classes are used to store variables that are
accessed through the super-class.

Consider a simple example to count some kind of event.
4';

.4,

Class UsedData
I counter I

new
counter <- 0;

4-' Icount
counter <- counter + n

I report
'counter = ' (counter printString) print.

• "Class UserAccess
I userData I

udSet:
userData <- ud

I count
userData count.

Class Object :UserAccess
[next

self count
3

Class Main
[main ItheUd objl obj21

theUd <- UserData new.
objl <- Object new udSet: theUd.
obj2 <- Object new udSet: theUd.
5 timesRepeat: [objl next]
10 timesRepeat: [obj2 next 3
theUd report.

The result of running 'Main new main' would be to print the
number of times the Class Object was passed the message 'next'.
The way this works is that both of the super objects of objl and
obj2 have the value of the variable ud set to the same instance
of the Class UserData. Thus tere is only one copy of the vari-
able counter accessible from all the objects.

50

%4..47 -

The Hierarchy of Classes is:

Probability
Uniform

UserData
GlobalData

UserAccess
Identity

CpTrucks
IntermediatePoint
CollectionPoint

Truck
GenTruck
Body
IdleTask
Environment
CollectionClass

Worker
Task

DemonTask
Move
CkId
Misc
Dd
Pack
Id
Evac
Loader
Unloader

Note that all of the objects are sub-Classes of UserAccess. This
allows the global variables in UserData to be accessed through
UserAccess from the one copy of UserData passed into each object
at the time of object creation.

3. The Life of a Worker

In this last section, parts of the code relating to the life
of a worker will be examined in greater detail. A listing of the
complete source code is given in Appendix A, but for the reader's
convenience, relevant parts will be reproduced below as needed
with the discussion. The various stages in the life of a worker
to be discussed are: creating a worker, assigning a task, per-
forming a task, and returning to idle status.

a. Start Up. Workers are created and "live" in the class
IdleTask. The scheduler takes an idle worker and assigns him to
a task. When the task is ever, the worker is returned to the
idle state, to await reassignment to another task. When the
simulation starts, the message 'startUp' is sent to the class

51

* . **11J

IdleTask, (see the previous section), and the number of workers
in the collection point is passed on the message 'personnel:' as
shown below.

Class IdleTask :Identity
"Data"
I cp idlers timesldle maxIdle allWorkers I

startUp
idlers <- List new.
allWorkers <- List new.
maxIdle <- 12.
timesIdle <- 0.
self start.

I setCP: cpoint
cp <- cpoint

I personnel: n
n timesRepeat:

allWorkers add: (
idlers add: ((cp create: Worker) setCP:cp))].

As shown above, two lists of workers are generated. The workers
on the 'idlers' list are removed as each worker is assigned a
task. The 'allWorkers' is saved intact for listing the status of
the workers. The 'startUp' message is passed from the command

s <- Simulation new startup

discussed in the previous section.

b. Scheduling Tasks. After the IdleTask is created, it is
scheduled by the message 'scheduleNow' in the class Collection-
Point, as seen below.

Class CollectionPoint :CpTrucks
.p i

(((self iTask: (self create: IdleTask)) setCP: self
) personnel: pers
scheduleNow.

When the IdleTask is scheduled, the message 'next' is passed to
the IdleTask as shown below.

52

Class IdleTask :Identity

next Irti
timesIdle <- timesidle + 1.
rt <- cp reTask: idlers.
rt ifTrue: [timesIdle <- 0.].
timesIdle >= maxIdle ifTrue:

cp stop.
maxIdle <- 0.

Here the IdleTask will terminate the simulation (c.f. "cp stop")
if there is no more work to be done. This is determined by the
returned value of 'retask:'. In the CollectionPoint Class
'reTask:' tries to find work for the idle workers. The scheduler
will make 12 (c.f. maxIdle <- 12) attempts to schedule idle
workers.

When a worker finishes a task he looks for work. If there
is no work to be done then he is idle. This worker will then add
himself to the 'idlers' list by passing the IdleTask the message
'idleWorker:'. This is illustrated in the following code.

Class CpTrucks :Identity

iTask idleWorker: worker.

Class IdleTask :Identity

I'idleWorker: w
w sleeping ifFalse: [

(idlers isEmpty and:
maxIdle > 0]) ifTrue:

self schedule:5

w setIdle.
idlers add: w.

2.

It is possible to have a worker that has either worked into the
night or worked a full work day of 7.5 hours. These workers are
scheduled to wake up in the morning. If they are not asleep, and
the 'idlers' list is empty, then the idleTask is not on the
'eventQueue'. This requires that the IdleTask be scheduled so
that the workers can be given tasks. Then each worker is marked
as Idle and added to the list of 'Idlers' for tasking at the
scheduled time, as shown above.

53

From above, one sees the IdleTask being scheduled by the
message 'reTask:'. Here each worker is removed from the idlers
list and given to the CollectionPoint Class with the message
'taskSelect:'. If any worker is given a task, then the returned
value is true. This informs the IdleTask not to terminate. Any
workers that remain, after all the doable tasks are assigned
workers, are idle and are passed back to the IdleTask (shown
below as iTask).

Class CpTrucks :Identity

"-...----------- This list of workers needs to find work."
I reTask ": helpers"

helpers notNil ifTrue: [self reTask: helpers]

I reTask: list I 1 val I
val <- false.
1 <- List new.
[list isEmpty] whileFalse:

[1 add: (list remove)].
"give them tasks."

[I isEmpty not and:
[(self taskSelect: (1 remove))

]] whileTrue: [val <- true].
"no more jobs case."

1 isEmpty]whileFalse:[iTask idleWorker:(l remove)].
Aval

Class CollectionPoint :CpTrucks

I taskSelect: worker

(self selectIdle: worker) ifTrue: (Atrue].

(self selectInTruck: worker) ifTrue: [Atrue].
(self selectOutTruck: worker) ifTrue: [Atrue].

(self selectHelp: worker) ifTrue: [Atrue].
(self selectNoWorker: worker) ifTrue: [Atrue].
(self selectBigQ: worker) ifTrue: [Atrue].

iTask idleWorker: worker.

A false

c. Task Priorities. The message 'taskSelect:', seen above,
tries a set of schemes to give a worker a task. The order of
schemes defines a priority, in that the first task found is the
one assigned to the worker. The task priorities from highest to
lowest are:

54

- end of the day

- trucks to be unloaded

- trucks to be loaded

- workers needing assistance

- tasks with no workers assigned

- tasks with a large backlog

- perform the previous task again

- random choice

The first priority is to check for night time, since work can not
be performed in darkness. The next priority is to unload incom-
ing trucks, then to load trucks. The fourth priority is to find
helpers when needed. For example, some task might require two
workers yet have only one worker currently assigned. Thus one
helper is needed. The fifth priority is to fill tasks where no
workers are assigned. Then if all tasks have workers assigned,
the sixth priority is to reduce large backlogs. If there are
none, then the seventh priority is to reassign the worker to the
previous task. Finally, if the worker had no previous task, the
last priority is to choose one at random.

Starting at the top of the list, a few of these tasks will
be examined in more detail. The first scheduling priority is to
check for the end of the work day. The message 'selectldle:'
checks for:

1. working over 7.5 hours in one day

2. the condition of 'lightsOut'

Current doctrine specifies a maximum of 7.5 hours per day per
worker to be devoted to GRREG tasks. The condition 'lightsout'
occurs when the CollectionPoint is close to the front and it is
not safe to run lights at night. If either of these are true,
then the worker goes to sleep. This requires that he be
scheduled for wakeup in the morning. This has been structured as
follows.

55

.. ! rrrrrrrr -- ---- - -- .--. - -.... .. n- u ...

Class CollectionPoint :CpTrucks

I selectIdle: worker Ick t hi
((worker hoursWorked) >= workMax or: [self lightsOut]
ifTrue:[

h <- worker todayWorkTime.
t <- self timeIs.
ck <- self morning: (self timeIs).
(ck - t) < h ifTrue: [ck <- t incHours: h J.

worker sch: ck.
worker setIdle.
worker setSleeping.

Atrue

Afalse

1. I selectInTruck: worker
(enterQ notEmpty or: [inTruck notNil
)and: [unloadW size < unloadWorkersMax)
ifTrue: C

self taskInTruck: worker.
A true

A false

I selectOutTruck: worker
((loadW size < loadWorkersMax

and: [exitQ notEmpty or: [self outTruckLoadable] 3
and: [loadQ size >= truckMin]

ifTrue: [
self taskOutTruck: worker.

A true
A ̂false

The next two schemes for tasking are to unload and to load
trucks, in that order. If the trucks are ready to be unloaded or
loaded, then the messages 'taskIntruck:' and 'taskOuttruck:' are
used to start the workers unloading or loading trucks respec-
tively. Scheduling workers for trucks is more complex than most
tasks since it takes helpers on the trucks to move the bodys to
the tail gate, where pairs of workers can take the bodies to the
first queue for assigning evacuation numbers.

The table in the comment below is used to determine what
each worker is to do in order to unload trucks. For example, the
first and second workers passed in to 'taskInTruck:' are stored
on a list of helpers, since two workers alone cannot unload a

I" 56

truck. The third worker passed in functions as one of the
helpers and gets onto the truck, and the other two remain on the
ground to carry bodies. Note also that the trucks must be moved
up to the unloading location with the message 'deQintruck'.

Class CpTrucks :Identity

S------ Getting a new worker for unloading the trucks."
I taskInTruck: worker I s w

worker setIdle.
helpers add: worker. "This worker is ready to work."
s <- helpers size.
self deQinTruck. "Get truck in place for unloading."

J.

of Put helpers to work unloading.
number of action for the current number of

helpers unloading workers.
0 3 5 7

#. -- --- --- t--

2 a2 a2 t
3 a3 a2 a2t t
4 a3 a4 a2t t

5 a5 a4 a2t t
6 a5 a4t a2t t

7 a7 a4t a2t t
>7 a7t a4t a2t t

Key: aN = add N workers to the task.
t = retask all help workers. They are excess.

(w <- unloadW size) = 0 ifTrue: [self itwo:s 3
ifFalse: [w = 3 ifTrue: [self itw3:s 3

ifFalse: [w = 5 ifTrue: [self itw5:s 3
ifFalse: [w = 7 ifTrue: [self reTask 3

ifFalse [self print: [('error: ',
(w printString),' workers
are unloading a truck.')33 3 3 3

The logic of the truck tables got to big to put
into one method, so cut out each column of the table.
For a value of w, and each range of s do the action."

I itwO: s "(w=0) [3-4]:a3 [5-63:a5 >6: a7t
s > 6 ifTrue: [self addInTruck: 7. self reTask 3

ifFalse: [s > 4 ifTrue: [self addInTruck: 5 3
ifFalse: s > 2 ifTrue: self addInTruck: 3

I itw3:s "(w=3) [2-3]:a2 [4-53:a4 >5: a4t-

57

s > 3 ifTrue: [self addInTruck: 4. self reTask J
ifFalse: [s > 1

ifTrue: [self addInTruck: 2.
self reTask

]]
itw5: s "(w=5) >2:a2t"

s > 1 ifTrue: [self addInTruck: 2.
self reTask

"Add a number nf workers to the job of unloading."
. addInTruck: n i 1 h I

"n:start 2:lp 3:lp+l 4:2p 5:2p+l 7 :3 p+1"

"The odd man's job is to get onto the truck."
n odd ifTrue: [

unloadW add: (h <- helpers remove setWorking).
self pr:[((h printString),

jumps on the truck.')]

n > 1] whileTrue:

n <- n - 2.
1 <- List new.
1 add: (helpers remove).
1 add: (helpers remove).
(((1 first) task: 1 create: Unloader

setCP: self
scheduleNow.

1 do: [:w I unloadW add; w].

The message 'addInTruck:', listed above, tells how many workers
are to be allocated to the task of unloading a truck. If the
number is odd, then the odd man is used on the truck and the

.rest are scheduled to take off a body with the task classUnloader.

The super class of Unloader is the class Task. This task
stores: the worker doing the task; the body the task is done to;
the name of the task; and the probability distribution for the
task time.

The super class of Task is the class CollectionClass. In
%the code above, the message 'setCP:' is passed to the Unloader,

and the super super class CollectionClass stores the class Col-
lectionPoint for message passing from the task Unloader to the
CollectionPoint.

58

"Remember the Collection Point class for all workers."1
Class CollectionClass :Identity

cp
setCP: cPoint

cp _ cPoint
Icp

Acp

InightTime
Acp nightTime

IlightsOut
ACp lightsout

I idleTask: tobj "--All of these workers are now idle."1
(tObj workers) do: :w Icp idle: w)

idleWorker: w
cp idleWorker: w.

unloadTruck: tobj
A(Cp unloadTruck: tobj)

IloadTruck: tObj
A(Cp loadTruck: tObj)

IprocEvac: tobj
Acp procEvac: tObj

I procld: tObj
ACp procld: tobj

IlistWorkerTask
cp listWorkerTask

IreTask: wl
cp reTask: wl

IprocDemon
ACp procDemon

Class Task :CollectionClass
Ibody
workerList "A list of the workers moving the body."
name
uniTime

cstartUp
body <- nil.
uniTime <- Uniform new var2O: (self taskTime).

taskClock Itck I"Get random time for this task."
tck <- uniTime taskClock.

A tck

59

Iname: n "store the name of this task."
Afname <- n

I printString "tell the name"
A name.

body isNil ifTrue: [̂ name]
ifFalse:
['(name, (', (body printString),)')].

I body: b "Store the body."
body <- b

I body "retrieve the body'
Abody

I setWorking I w j "For all workers on this list,, set them as working."
w <- workerList first.
w notNil] whileTrue:

w setWorking.
w <- workerList next

I workers "retrieve the worker list."
AworkerList.

workers: wl "Put workers on the worker list."
workerList <- wl.

.' ~reSchedule: wobj "If there is a body then do the task."
body notNil ifTrue: [

wObj scheduleAfter: (wobj taskClock)
ifFalse: C

self reTask: workerList.

Class Unloader :Task
startUpTask

A self.
I max "number of workers allowed."

A7.

min "number of workers required for one body."
A2.

taskTime "return the time required."
A2.

I prefix: echelon
,self name: (echelon, 'Unload')

next
self setWorking.
self body: (self unloadTruck: self).

The Unloader class message 'next' is received, and the work-
ers on this task are marked as working, and the message

60

'unloadTruck:' is passed to self. This message is intercepted by
the super super class CollectionClass. There the CollectionPoint
class is stored as 'cp'. This allows the message to be forwarded
to the CollectionPoint.

Here the trucks can be accessed so one can get a body. And
one can access the queues for putting the body when a task is
done. The running of a task procedure is a transaction where the
object Unloader has been scheduled. The actions are:

1. put the old body, if any, on the output queue.

2. test for being idle.

3. get a new body from the truck.

4. if there are no more bodies, then retask the workers.

5. if there is a body, schedule after the time needed for the
task.

q.

These actions can be seen below.

n.1

L"

Vl.

'; 61

Class CollectionPoint :CpTrucks

" Handle incoming bodies. (next)"
I unloadTruck: tObj Ibdy ti

bdy <- self unloadl: tObj.
bdy notNil ifTrue: [tObj scheduleAfter:

(tobj taskClock)].

A bdy.

I unloadl: tObj jwl bdyl
wl <- (tObj workers).

bdy <- tObj body.
tobj body: nil.

self put: bdy by: wl
on: unloadQ msg: 'completes unloading, of'.

bdy <- nil.

self moveoutOverFlow: wl.
self deQinTruck.

(inTruck notNil and: [(self testIdleInTruck: tObj) not])
N ifTrue: [

bdy <- self getBy: wl
from: inTruck
msg: 'start unloading, of'.

"2' "Free the workers."
bdy notNil ifTrue:

bdy enter.
]ifFalse:["Free the workers."

self freeReTask: unloadW.
I.
Abdy

The code for the other priority schemes is given in the
appendix, and will not be discussed.

62

n, N

IX. Conclusions

Object oriented languages have become popular in the 1980's.
Their strengths have been in the areas of simulation, graphics,
project/software management, and AI. This report restricts its
scope to simulation and does not touch upon other strong points
of SMALLTALK. These other fields are being actively pursued at
the BRL and future reports will be concerned with additional
applications of SMALLTALK.

SMALLTALK provides a natural framework for simulation stu-
dies. Programs can be easily written, tested, debugged, run, and
modified. The GRREG simulation could not have been done in the
time available using any other language or simulation package.

X. Summary

This paper discusses a simulation project, written in
SMALLTALK, that was performed by the BRL for the Graves Registca-
tion (GRREG) Service of the US Army Quartermaster School. The
purpose of the report is first to give the reader an introduction
to the concept of object oriented programming, and second to show
how the object oriented language SMALLTALK was used for the GRREG
simulation. The paper first describes some of the features of an
object oriented language, including a discussion of objects, mes-
sages, and inheritance. Next, the syntax and semantics of the
object oriented language SMALLTALK are presented. There follows
a synopsis of the GRREG study conducted by the BRL, and a look at
how SMALLTALK was used to simulate the GRREG task network.
Finally, the report steps through sections of the code to give
the advanced reader a glance at how some generic actions can be
programmed in SMALLTALK.

63

REFERENCES

1. Stefek, Mark and Bobrow, Daniel. "Object-Oriented Program-
ming: Themes and Variations," AI Magazine, Winter 1986,
pp. 40-62.

2. Dahl, O.J. and Nygaard, K. "SIMULA - An Algol Based Simula-
tion Language," Comm. ACM, No. 9, 1966, pp. 671-678.

3. Rentsch, Tim. "Object oriented Programming," Dept. of Com-
puter Science, Working Paper, UCLA, n.d.

4. Goldberg, Adele and Robson, D. "Smalltalk-80: The Language
and its Implementation," Addison-Wesley, 1983.

5. Fikes, R. and Kehler, T. "The Role of Frame-Based Represen-
tation in Reasoning," Comm. ACM, Vol. 28 No. 9, 1985, pp.
905-920.

6. Goldstein, I.P. and Roberts, R.B. "NUDGE, A Knowledge-Based
Scheduling Program," IJCAI-1977, pp. 257-263.

7. Stefik, Mark. "An Examination of a Frame-Structured
Representation System," IJCAI-1979, pp. 845-852.

8. Rees, J.A., Adams, N.I., and Meehan, J.R. "The T Manual,"
Yale Univ. Technical Report, Jan. 1984.

9. Bobrow, D.G., Kahn, K., Kiczales, G., Masinter, L.,Stefik,
M. and Zdybel, F. "CommonLoops: Merging Common Loops and
Object- Oriented Programming," ISL-85-8, Xerox PARC, Aug,
1985.

10. Cohen, A. Toni. "Data Abstraction, Data Encapsulation, and
Object Oriented Programming," Dept. of Computer and
Information Sciences, Working Paper, Univ. of Delaware,
n.d.

11. Shankar, K.S. "Data Structures, Types, and Abstractions,"
Computer, April, 1980, pp. 67-77.

64

APPENDIX

Source Code

65

% A 11 ~

Introduction

This appendix contains a listing of the source code for the
GRREG simulation. Exhibit A-i lists the class hierarchy for the
various subclasses used in the simulation, and Exhibit A-2 gives
a brief description of those subclasses. The remainder of the
appendix lists the source code. The classes are listed in alpha-
betic order, except for the Task subclasses, which, because of
their similar structure, have been grouped and placed at the end.

67

Exhibit A-1. GRREG Class Hierarchy

Clock

Obj
Simulation
Probability

Uniform
UserData

GlobalData
UserAccess

Identity
Environment
IdleTask
Body
CpTrucks

IntermediatePoint
CollectionPoint
TemporaryCemetery

RestartTools
SuperReStart

ReStart
CollectionClass

DemonTask
Truck
GenTruck

Worker
Task

InCover
Dd3x5
Mv2site
ShipPe
Dig
Plates
Shroud
DTailId
Fingerp
DisRobe
Move
CkId
Misc
Dd
Pack
Id
Evac
Loader
Unloader

68

Exhibit A-2. Class Descriptions

Clock Contains the simulation clock.

Obj The root of the simulation.

Simulation Controls the processing of each event.

Probability Used to access Random numbers.

Uniform Transforms random numbers into distributions.

UserData This super class allows storage of applica-
tion dependent global data throughout the
simulation. Note: there is only one UserData
class in the simulation.

GlobalData Stores application independent data, like the
current simulation time and the event queue.

UserAccess This super class contains a pointer and
methods for acesss and update of the Global
data throughout the simulation.

Identity This super class contains access to applica-
tion independent global data. As well as
keeping reference to unique names for each
object in the simulation, Identity allows
access and update of the event queue. Thus
all offspring of Identity are scheduleable
objects.

Environment Starts up an application dependent simula-
tion.

IdleTask This task Creates workers and holds them
until there is work to be done.

Body This task contains the attributes of a
cadaver.

CpTrucks This super Class of the collection points
contains that portion of the Collection point
processing that is in common with each col-
lection point. This task contains the worker
allocation Methods. As well as the queues
for incomming and outgoing Trucks.

69

Class Description (cont.)

* TemporaryCemetery The Collection Points are a network of queues
that allow the workload to flow from task(
the offspring of the Class Task) to task.
Each of the three Collection points contain
the queues and the links from one task queue
to another task queue.

IntermediatePoint ******

CollectionPoint

RestartTools These three classes allow the definition of
different processing configurations and
collection-point to collection-point net-
works.

SuperReStart

ReStart

CollectionClass This super class allows message passing from
the offspring of Task to the collection
points, which are offspring of CpTrucks.

DemonTask This periodic task invokes output displays.

Truck Defines the attributes of a truck.

GenTruck Defines the rate at which bodies are
retrieved from the field.

Worker Defines the attributes of a collection point
(MOS 57F) worker.

Task This super task stores the workers and
deceased for specific tasks associated with
collection points. The offspring of Task are
processing actions of workers upon a cadaver.

InCover Place remains in grave and cover.

Dd3x5 Prepare internment and plot records.

Mv2site Move remains to grave site.

70

a •

Class Description (cont.)

ShipPe Prepare and ship PE.

Dig Dig grave site.

Plates Prepare plates and tags and attach.

Shroud Shroud remains.

DTailId Perform detailed ID; consists of anatomical,
dental, and/or skeletal charting, photography
and comparison of evidence with records.

Fingerp Fingerprint remains.

DisRobe Remove clothing and examine.

Move Move remains.

CkId Compare remains with documentation.

Misc Miscellaneous record keeping.

Dd Prepare convoy list.

Pack Place remains, documents, and PE in human
remains pouch and move to holding area

Id Check ID tags, field medical card, prepare
statement of recognition, record of recovery
(if necessary), inventory PE and fingerprint.

Evac Assign an evacuation number and record.

Loader Load remains on truck.

Unloader Unload remains.

71

S **~ ~ .-- .-.. bI -41

Class Body

#I------------Bodies '

Class Body :Identity
I death finger beenToCP enterTime exitTimel

[startUp
enterTime <- Clock new.
finger <- false.
beenToCP <- 0.
Aself

deathAt: time
death <- (Clock new) set: time

IdeathAtdet

enter
enterTime <- self timels.

Iexit:cp Ideltal
exitTime <- self timels.
self print: [

(enterTime priritString), 1

(exitTime printString),oi
((delta <- exitTime -enterTime)

printString),
(self printString), 1 #'
(cp printString)]

A delta.

IbeenToCP: btc
beenToCP <- btc.

IbeenToCP
A beenToCP>0

IbeenToIP
AbeenToCP > I

setIP
beenToCP <- 2.

'S. setCP
5'- beenToCP <- 1.

printString
beenToCP >1 ifTrue:

[^super printString, '* ."2
beenToCP > 0 ifTrue:

[^super printString, 1 J
A super printString.

72

Ipref ix
b

f fingerP
A f inger.

fingerPrint Iti
finger ifFalse: [A^finger <- true]
A false

"Scheduling"
I next

self pr:[~C self printString),
Lays there.').

73

Class Clock

Class Clock :Magnitude
I day hour min sec ("hands of the clock."

[new
day <- 0.
hour <- 0.
min <- 0.
sec <- 0.

* new: aClock
self set: aClock

"Setting"
I set: aClock

day <- aClock day.
hour <- aClock hour.
min <- aClock min.
sec <- aClock sec

sec: aNumber
sec <- aNumber.

sec >= 60 3 whileTrue:
C self incMin: 1. sec <- sec - 60 3.

sec < 0 3 whileTrue:
[self decMin: 1. sec <- sec + 60 3

I min: aNumber
min <- aNumber.

min >= 60] whileTrue:
C self incHour: 1. min <- min - 60 3.

min < 0 j whileTrue:
[self decHour: 1. min <- min + 60 3

hour: aNumber
hour <- aNumber.
[hour >= 24] whileTrue:

C self 4ncDay: 1. hour <- hour - 24 .
[hour < 0] whileTrue:

[self decDay: 1. hour <- hour + 24 3
I day: aNumber

day <- aNumber

"UpDating"
incSec: aNumber

self sec: (sec + aNumber)
I incMin: aNumber

self min: (min + aNumber)
incHour: aIumber

self hour: (hour + aNumber)
incDay: aNumber

day <- day + aNumber

decSec: aNuimber
self sec: (sec - aNumber)

I decMin: aNumber
self min: (min - aNumber)

74

) . 4 ~ . **4**~ - - F. . \- * .

IdecHour: aNumber
self hour: (hour - aNumber)

decDay: aNumber
day <- day - aNumber

I*aNum
A((Clock new

)incDay: (day * aNum)
)incHour: (hour * aNum)
i -Min: (min * aNum)
in..Sec: (sec * aNum)

I+ aClock
A((((Clock new: aClock

)incDay: day
incHour: hour
incMin: min
incsec: sec

I-aClock
A(((Clock new: self

)decDay: (aClock day)
decHour: (aClock hour)
decMin: (aClock min)
decSec: (aClock sec)

"Access"
Iday

A day.
Ihour

A hour.
Imin

Sec As c

IprintHM Ihm s
hm <- (hour*l00) + min.
hm < 1000 ifTrue:[

hm < 100 ifTrue:
hm < 10 ifTrue:

[s <- '000', (hr. printString)]
ifFalse:

[s <- '00',(hm printString))
if False:

[s <- '0', (hm printString)]
if False:

[<- (hm printString) i
As

IprintString
sec = 0 ifTrue: C A (day printstring),

':', self printHM].
A (day printString), ':1, self printHM,

75

':', (sec printString)

=aClock
a (~ (day = aClock day)

& (hour = aClock hour)
& (min = aClock min
& (sec = aClock sec))

"NOTE: Combining some of the parts
makes comparisons faster."

> aClock I left right
(left <- self highPart) >

(right <- aClock highPart))
ifTrue: Atrue]
ifFalse: [(left = right)

ifTrue:
sec > (aClock sec))
ifTrue: ',true

A false.

<= aClock
A (self > aClock) not

I >= aClock I z I
A (self < aClock) not.

I < aClock
A(aClock > self).

"Private"
I highPart

A (min + (hour * 100) + (day * 10000))

]

76

Class CollectionClass

"Remember the Collection Point class for all workers."

Class CollectionClass :Identity
2-I Icp I

[setCP: cPoint
cp _ cPoint

Icp
A cp

InightTime
A CP nightTime

IlightsOut
A~p lightsOut

I idleTask: tObj
11---- All of these workers are now idle."
(tObj workers) do: [:w cp idle: w]

IidleWorker: w
cp idleWorker: w.

IunloadTruck: tObj
A(Cp unloadTruck: tObj)

IloadTruck: tobj
A(cp loadTruck: tObj)

IprocEvac: tObj
ACp procEvac: tObj

Iprocld: tObj
A~p procld: tObj

I procPack: tObj
Acp procPack: tObj

procCkld: tObj

pro~o procCkld: tObj
cpprocMove: tObj
Ac proc ~od: t~bj
AcP~d rocb : j

IA~ prrccisc t~bj
ArciCP poc s tb

I~ proccisiobe t~bj
CPprocDisRobe: tObj

I~ proc~ingerP: t~bj
Aro pin rocirgeP t~bj
AI procDiailld: t~bj

cp~ild proDald:tb
I~ procD~hroud: t~bj

cpprocShroud: tObj

IprocPlates: tObj

77

Acp procPlates: tObj
IprocDig: tObj

ACp procDig: tobj
IprocShipPe: tObj

ACp procShipPe: tObj
procMv2site: tobj

ACp procMv2site: tobj
procDd3x5: tObj

ACp procDd3x5: tobj
IproclInCover: tobj

ACp proclnCover: tObj

IlistWorkerTask
cp listWorkerTask

IreTask: wi
cp reTask: wi

procDemoi
ACp procDemon

78

~J

Class CollectionPoint

"Brigade Level"

Class CollectionPoint :CpTrucks
"'Data"il

evacW idW packW ddW miscW "Workers doing tasks"
evacQ idQ packQ ddQ miscQ "Places to put bodys."1

loadQ
taskList "a list of triples

(see makeTaskList) ."
battleZone "Lights out at night."

"'Methods"I
[prefix: echelon I ch I

PCP Iechelon = ,echelon]display.
ch <- echelon at:l.
ch == $x ifTrue: (

A (echelon copyFrom: 2 to: (echelon size)), 'c'
IifFalse: C

ch ==$t ifTrue: [Aechelon, 'c'

AIC

IstartUp
C' I startup I', (self printString)]display.
super startTrucks.
self startQueues.

o timesRepeat: [self addBody~n: evacQ]
o timesRepeat: [self addBody~n: idQ].
0 timesRepeat: [self add~odyon: packQ 3
0 timesRepeat: [self add~ody~n: ddQ].
0 timesRepeat: [self addBodyon: loadQ 3

self taskList: (taskList <- self makeTaskList).
battleZone <- true.

IreStart: blist Itk bdysl
(bdys <- blist first) ='p' ifFalse: "letter"

('warning error: CP letter = 1
(bdys printString), '.']display.

bdys <- blist next. "number of bodies"

* tk <- (((((self create: Genruck) setCP: self
)queue: (self enterQ)

)fill: (self truck~in) to: (self truckFull)
)bdys: bdys

)schedule: 1.

((C ((self create: GenTruck) setCP: self
)queue: (self exitQ)

)rate: (tk rate)

79

) trucks: (bdys / 12 roundTo:l)
) schedule: 30.

deceased: list I foo pers bdys time tk tkRate
['CP list=', (list printString)]display.

(foo <- list remove) = 'C' ifFalse: ["letter"
['warning error: CP letter = ',

(foo printString), .]display.
1.

pers <- list remove.
bdys <- list remove.
time <- list remove.

tk <- (((((self create: GenTruck) setCP: self)
queue: (self enterQ))
fill: (self truckMin)
to: (self truckFull)
bdys: bdys
schedule: 0.

((((((self create: GenTruck) setCP: self
)queue: (self exitQ)

) timeTo: time
) rate: (tk rate)
trucks: (bdys / 12 roundTo:l)

) schedule: 0.

(((self iTask: (self create: IdleTask))
setCP: self) personal: pers

) scheduleNow.

((self demon: (self create: DemonTask))
setCP: self) scheduleNow.

I makeTaskList I 1 1
1 <- List new.
1 add: (self makeTL: evacQ with: evacW

task: Evac).
1 add: (self makeTL: idQ with: idW

task: Id).
1 add: (self makeTL: packQ with: packW

task: Pack).
1 add: (self makeTL: ddQ with: ddW

task: Dd).
1 add: (self makeTL: miscQ with: miscW

taskN: Misc).
Al

"make the queues for the Collection Point."
I startQueues

8o

evacQ <- self unloadQ.
idQ <- List new.
packQ <- List new.
ddQ <- List new.
miscQ <- List new.
loadQ <- self loadQ.

"Workers"
eVacW <- List new.
idW <- List new.
packW <- List new.
ddW <- List new.
miscW <- List new.

Ilightsout
battleZone ifTrue: A Aself nightTime)
A false.

NEXT

procEvac: tobj I wkr bdy I
wkr <- tObj workers first.
bdy <- tObj body.
tObj body: nil.

self put: bdy by: wkr
on: idQ msg:

'completes Evac form DD1077, on'.

(self testldle: tobj) ifTrue:[
bdy <- nil

]ifFalse:[
bdy <- self getBy: wkr from: evacQ

msg: 'assigns Evac #to'.

self free: tObj when: bdy from: evacW.
Abdy.

procld: tObj jwkr bdy I
wkr <- tobj workers first.
bdy <- tobj body.
tobj body: nil.

self put: bdy by: wkr
on: packQ msg:

'completes Id and DD forms, on'.

(self testldle: tOb5') ifTrue:[
bdy <- nil

]ifalse:[
bdy <- self getBy: wkr from: idQ

81

- JK - ,CI

msg: 'starts to Id'.

self free: tobj when: bdy from: idW.

A bdy.

procPack: tObj wkr bdyI
wkr <- tObj workers.
bdy <- tObj body.
tobj body: nil.

self put: bdy by: wkr
on: ddQ msg: 'finishes Moving, of '

(self testldle: tObj)ifTrue:[
bdy <- nil

]ifFalse:
bdy <- self getBy: wkr from: packQ

msg: 'start to Pack and Move'.

self free: tobj when: bdy from: packW.

-bdy.

procDd: tobj Iwkr bdy
wkr <- tObj workers first.
(bdy <- tobj body) notNil ifTrue: [bdy setCP]
tObj body: nil.

self put: bdy by: wkr on: loadQ

msg: 'completes DD175, for'.

self put: bay by: wkr on: miscQ.

(self testldle: tObj) ifTrue:(
bdy <- nil

]ifFalse:[
bdy <- self getBy: wkr from: ddQ

msg: 'starts to fill out DD175 for'.

self free: tobj when: bdy from: ddW.

Abdy.

procMisc: tObj Iwkr bdy
wkr <- tObj workers first.
tobj body: nil.

self testldle: tobj)ifTrue:E
bdy <- nil

]ifFalse:

82

bdy <- self getBy: wkr from: miscQ

msg: 'does the miscellaneous task.'.

self free: tobj when: bdy from: miscW.

Abdy.

Ilist
self listlnTruck.
self listTask: taskList.
self listoutTruck.

IlistWorkerTask
self listlnTruck.
self listTask: taskList.
self listOutTruck.
self reTask.

83

Class CpTrucks

Class CpTrucks :Identity
"Data"I

"Unprocessed/Processed Bodies in trucks"
enterQ exitQ
"The curent unloading/loading truck."
inTruck outTruck
"Lists of workers doing tasks."
unloadW loadW
"Places to put bodies."
unloadQ loadQ
"Through put list"
goneQ
"Variables (see startUp)"
unloadWorkersMax loadWorkersMax
truckFull truckMin pullUpTime maxBodys
"The next stop for bodies."
truckNext fowarding

q" workMax
N"Hooks to sub classes."

iTask demon
"A list of triples (see makeTaskList)."
taskList
"Those that are waiting to do a task,"
helpers
"and the task the worker is waiting for."
helpT
timeTo
"Used to count the bodies at the CP."
countofbdys
"Report on queues information."
qcnt qname

"Methods"l
startTrucks

unloadWorkersMax<- 7.
"Max. number of workers for unloading."

loadWorkersMax <- 6.
" to '' if loading."

truckFull <- 24.
"Max. number of bodies in a truck."

truckMin <- 12.
"Min. number of bodies to load."

timeTo <- 5. "default time."

pullUpTime <- 1.
"Min.s to move truck up to unloading loc."

maxBodys <- 800.
"CP body overflow threshold."

fowarding <- false. "under threshold."

84

workMax <- 7.5. "17.5 hours of work per day."

enterQ <- List new. "Truck Queues"
exitQ <- List new.
inTruck <- outTruck <- nil.

"Truck currently being unloaded."
unloadQ <- List new. "Bodies not in trucks."
loadQ <- List new.
goneQ <- List new.

unloadW <- List new. "Workers"
loadW <- List new.
helpers <- L..-st new.

ItimeTo: t
timeTo <- t.

IenterQ
" enterQ.

IexitQ
A exitQ.

truck~in
A truckd~in

ItruckFull
Atruckull

truckNext: q "The next place to take trucks."
truckNext <- q

Istop
demon stop

IidleWorker: w
iTask idleWorker:w.

Idemon: d
A demon <- d

Idemon
'demon

ItaskList: ti
A taskist <- tl.

IiTask: it
A iTask <- it

IiTask
A iTask

IunloadQ
A unloadQ

IloadQ
A loadQ

TASK Assignments

ItaskSelect: worker

85

worker sleeping ifTrue: [[(worker printString),
I is Sleeping. ']display.

Atrue

(self selectIdle: worker) ifTrue: [^true].
(self selectInTruck: worker) ifTrue: [Atrue].
(self selectOutTruck: worker) ifTrue: [Atrue].
(self selectHelp: worker) ifTrue: [Atrue].
(self selectNoWorker: worker) ifTrue: [Atrue].
(self selectBigQ: worker) ifTrue: [Atrue].

iTask idleWorker: worker.
Afalse

selectIdle: worker Ick t hl
((worker hoursWorked) >= workMax

or: [self lightsOut])ifTrue:[
h <- worker todayWorkTime.
t <- self timeIs.
ck <- self morring: (self timeIs).
(ck - t) < h ifTrue: [ck <- t incHour: h].

self print: [((worker printString),
' takes a nap, until '
(ck printString), . .

worker sch: ck.
worker setIdle.
worker setSleeping.
A true

A false

testInTruck
((enterQ notEmpty or: [inTruck notNil
)and: [unloadW size < unloadWorkersMax]

) ifTrue: [Atrue].
A false

selectInTruck: worker
self testInTruck ifTrue: [

self taskInTruck: worker.
A true
A false

selectOutTruck: worker
loadW size < loadWorkersMax
and: [exitQ notEmpty
or: [self outTruckLoadable]]

) and: [loadQ size >= truckMin]
ifTrue:

self taskOutTruck: worker.

86

4 .. :' ~ -% % .

A true

S]. "false

selectHelp: worker
helpT notNil ifTrue:

self startHelp: worker.
A true

]I Afalse

selectNoWorker: worker I taskl I
(taskl <- self noWorkerTask) notNil

ifTrue: [
self start: taskl with: worker.
^true
" false

selectBigQ: worker taskli
(taskl <- self bigestQ) notNil

ifTrue:[
self start: taskl with: worker.
"true
A false

------------ This list of workers needs to find work."
i reTask ": helpers"

helpers notNil ifTrue: [self reTask: helpers]

reTask: list I 1 val I
val <- false.
1 <- List new.
[list isEmpty] whileFalse:

[1 add: (list remove)].
"give them tasks."

[1 isEmpty not and:
[(self taskSelect: (1 remove))

3 3 whileTrue: [val <- true].
"no more jobs case."

1 isEmpty] whileFalse:
[iTask idleWorker: (1 remove) 3.

"val

------------------------- Over worker/night testing."'
I testIdle: tObj Ivall

val <- false.
tObj workers do:[:w I (self sel:nctIdle: w)

ifTrue: [val <- true] 3.
val ifFalse:[(self testInTruck)

ifTrue: [val <- true) 3.
^val.

I testIdleInTruck: tObj Ivall

87

AD-A175 198 SIMULATION USING SMALLTALK(U) ARMY BALLISTIC RESEARCH
LAB ABERDEEN PROVING GROUND MD R A HELFHAN ET AL.
OCT 86 BRL-TR-2764

UNCLRSSIFIED F/G 9/2

EI/EEEEI/I/IlE
E///////I////I
EE//IEE////EI
EE//EEEEE//EEE
EEE////EEEE /

___M28 11 2.5

I1.8

111111..8Ilift __L4___

4 6~COPY RESOLUTION TEST CHART

val <- false.
tObj workers do:[:w I (self selectIdle: w)

ifTrue: [val <- true] J.
Aval.

I nightTime IhI "from 8pm to 6am is nightTime."
h <- self timeIs hour.

h <= 6 or: [h >= 20)) ifTrue:
(" h >= 20

A true
].
Afalse

"-- set up functions"
makeTL: q with: w task: t I 1 I

1 <- List new.
1 add: q.
1 add: w.
1 add: t.
1 add: true.
Al

I makeTL: q with: w taskN: t I 1 I
1 <- List new.
1 add: q.
1 add: w.
1 add: t.
1 add: false. "no Queue reports"
Al

- debug body generation."
addBodyOn: q I bdy time I

time <- (Clock new) set: (self timeIs).
bdy <- (self create: Body) deathAt: time.

bdy fingerPrint.
bdy setCP.

q add: time
put: bdy

-Getting a new worker for unloading the trucks."
I taskInTruck: worker I s w I

worker setIdle.
helpers add: worker.

"This worker is ready to work."
s <- helpers size.
self deQinTruck.

"Get truck in place for unloading."

if Put helpers to work unloading.
number of action for the current number

of unloading workers.

88

Sam&7

helpers 0 3 5 7
1 - - - t

2 - a2 a2 t
3 a3 a2 a2t t
4 a3 a4 a2t t
5 a5 a4 a2t t
6 a5 a4t a2t t
7 a7 a4t a2t t
>7 a7t a4t a2t t

Key: aN = add N workers to the task.
t = retask all help workers.

They are excess.

(w <- unloadW size) = 0 ifTrue: [self itw0:s]
ifFalse: [w 3 ifTrue: [self itw3:s]

ifFalse: [w = 5 ifTrue: [self itw5:s)
ifFalse: [w = 7

ifTrue: [self reTask]
ifFalse: [self print: [('error: ',

(w printString),' workers
are unloading a truck.')]

) 1 3 2

"The logic of the truck tables got too big to put
into one method, so I cut out each column of the
table. For a value of w, and each range of s
do the action.

itwO: s "(w=0) [3-4]:a3 [5-6]:a5 >6: a7t
s > 6 ifTrue: [self addInTruck: 7. self reTask]

ifFalse: [s > 4 ifTrue: [self addInTruck: 5]
ifFalse: [s > 2 ifTrue: [self addInTruck: 3 3
I I

I itw3:s "(w=3) [2-3]:a2 [4-5]:a4 >5: a4t "
s > 3 ifTrue: [self addInTruck: 4. self reTask]

ifFalse: [s > 1
ifTrue: [self addInTruck: 2.

self reTask3]

I itw5: s "(w=5) >2:a2t"
s > 1 ifTrue: [self addInTruck: 2.

self reTask
3.

--------------- Getting a new worker for loading a truck."

89

I taskOutTruck: worker I s w
worker setIdle.
helpers add: worker. "This worker is ready to work."
s <- helpers size.
self deQoutTruck. "Get truck in place for loading."

"Put helpers to work.
number of action for the current number

of unloading workers.
helpers =s, w= 0 2 4 6

----------- -

1 - - - t
2 - - a2 t
3 - - a2t t
4 a4 a4 a2t t
5 a4 a4t a2t t

6 a6 a4t a2t t
, >6 a6t a4t a2t t

w <- loadW size.
(w <- loadW size) = 0

ifTrue: [self otw0:s]
ifFalse: [w - 2
ifTrue: [self otw2:s]
ifFalse: [w = 4
ifTrue: [self otw4:s]

ifFalse: [w = 6
ifTrue: [self reTask 3
ifFalse: [self print:

[('error: ',
(w printString),
' workers are
loading a truck.'))

I otwo:s
S > 5 ifTrue: [self addOutTruck: 6. self reTask 3

ifFalse: [s > 3 ifTrue: C self addOutTruck: 4]]

I otw2:s
* > 3 ifTrue: [self addOutTruck: 4. self reTask]

Sotw4:s

I o.4ss > 1 ifTrue: [self addOutTruck: 2. self reTask]

Return the first taskClass with bodies and
no workers allocated.

I noWorkerTask I tl val
val <- nil.
(tl <- taskList first) notNil ifTrue:

[val <- self nwt: tl 3.

90

Aval.

I nwt: tIter Ique wkr tskjtItem isNil ifTrue: [Anil]

que <- tltem first.
wkr <- tItem next.
tsk <- tltem next.

(que isEmpty not and:[wkr isEmpty)
ifTrue: [̂ tItem]

Aself nwt: taskList next.

--------------- Return the taskClass with the largest
back log. With workers working as a factor."

bigestQ I tl val I
val <- self bigQ: nil

size: 1
task: taskList first.

Aval.

wkrBodys:wkr jqwl
qw <- 0.
wkr do: [:wI (w taskObj body) notNil

ifTrue: [qw <- qw + 1 3].
Aqw

bigQ: bItem size: bSize task: tItem
I que wkr tsk qs qw t tmin tmax ws nSize ISt~tem isNil ifTrue: [AbItem]
que <- tItem first.
wkr <- tItem next.
tsk <- tltem next.
que isEmpty not ifTrue:
[qs <- que size.

t <- tsk new.
tmin <- t min.
tmax <- t max.
ws <- wkr size.
qs <- qs + ((self wkrBodys: wkr) / tmin).

ws < tmax ifTrue:
wkr isEmpty ifTrue:
[self print:[('should not happen.

tltem =
(tItem printString))].

nSize <- qs.
]ifFalse:[

nSize <- (qs * tmin) / ws.

nSize > bSize ifTrue: [bItem <- tItem.

91

bSize <- nSize.

Aself bigQ: bItem
size: bSize
task: taskList next.

- - - - - - - - - - - - - - - -

Start a worker doing a task.

start: taskl with: worker I 1 wkr tsk min
taskl first.
wkr <- taskl next.
tsk <- taskl next.
min <- tsk new min.
1 <- List new.
min = 1 ifTrue:

wkr add: worker.
1 <- List new.
1 add: worker.
((worker task: 1 create: tsk

setCP: self
) scheduleNow.

] ifFalse: [
worker setIdle.
helpers add: worker.

helpT <- taskl.1.

I startHelp: worker I 1 wkr tsk min w
helpT first.
wkr <- helpT next.
tsk <- helpT next.
min <- tsk new min.
helpers add: worker.
helpers size >= min ifTrue:
[1 <- List new.

min timesRepeat:
(1 add: (w <- helpers remove).

wkr add: w.
3.
((worker task: 1 create: tsk

.setCP: self
scheduleNow.

helpT <- nil.
self reTask.

"Add a number of workers to the job of unloading."
addInTruck: n i 1 h I

"n:st&. 2:lp 3:lp+l 4:2p 5:2p+I 7:3p+1"
k"The Odd man's job is to get onto the truck."

92

n odd ifTrue: [unloadW
add: (h <- helpers remove setWorking).
self print:[((h printString),

jumps on the truck.')]

£n > 1] whileTrue:
n <- n -2.
1 <- List new.
1 add: (helpers remove).
1 add: (helpers remove).

(((1 first) task: 1 create: Unloader
)setCP: self

scheduleNow.
1 do: [:w IunloadW add: w)

"Add a number of workers to the job of loading."
addOutTruck: nW 1 1 1

"nW:start 2:1p 4:lp+2 6:2p+2"1

1 <- List new.
nW > 2 ifTrue: "Two men get on the truck."

2 timesRepeat:
nW <- nW- 1.
1 add: (helpers remove setWorking).

1 notEmpty ifTrue:
self print:[((1 printString),

Ijump on the truck.')].
1 do: [:w IloadW add: w]

nW > 0] whileTrue:
[1 <- List new.
nW <- nW - 2.
1 add: (helpers remove).
1 add: (helpers remove).
(((1 first) task: 1 create: Loader
setCP: self

)schedule: 1.
1 do: [:w I loadW add: w]

NEXT

"---- Handle Incomming bodies. (next)"
unloadTruck: tObj Ibdy ti

bdy <- self unloadl: tobj.

bdy notNil ifTrue:

tobj scheduleAfter: (tObj taskClock)].

S. 93

A bdy.

Iunloadi: tObj 1wl bdyl

wi <- (tObj workers).
bdy <- tObj body.
tObj body: nil.

self put: bdy by: W1
on: unloadQ
msg: 'completes unloading, of'.

bdy <- nil.

*self moveOutOverFlow: wl.
self deQinTruck.
(inTruck notNil and:

((self testldlelnTruck: tObj) not])
ifTrue: [bdy <- self

getBy: w1
from: inTruck
msg: 'starts unloading, of'.

"Free the workers."1
bdy notNil ifTrue:

bdy enter.
]ifFalse:["Free the workers."

self freeReTask: unloadW.

A bdy

--- Are there too many trucks?"
moveOutOverFlow: worker Itrk

fowarding ifTrue:
(trk <- enterQ remove) notNil ifTrue:[

self foward: trk by: worker

* foward: trk by: worker
'~foward: ', (trk printString), ' by: ',

(worker printString))print.
self print: [((trk printString),

Iis fowarded by ',

(wo~rker printString), ''3
self print:[('to drive off

to the next station.')]
trk leave: truckNext timeTo: timeTo.

"o---- Handle Outgoing bodies. (next)"
loadTruck: tObj I bdy t

bdy <- self ldl: tobj.

94

bdy notNil ifTrue:
[tObj scheduleAfter: (tObj taskClock) 1

A bdy.

ldl: tObj Jwl bayl

wi <- (tObj workers).
bdy <- (tObj body).
tObj body: nil.
self put: bdy by: W1

on: outTruck
msg: 'completes loading, of'.

self put: bdy by: wl on: goneQ.

bdy <- nil.

self deQoutTruck.
(self outTruckLoadable

and: [(self testldle: tobj) not]
ifTrue:[
bdy <- self

getBy: wi
from: loadQ
msg: 'starts loading, of'

bdy notNil ifTrue: [demon body: bdy
delta: (bdy exit: self).

]ifFalse:["Free the workers."
self freeReTask: loadW

A bdy

"Move the truck to the unloading area."
I deQinTruck Ipti

self moveoutOverFiow: nil.
inTruck isNil ifTrue:C

pt <- enterQ remove.
inTruck <- pt.

]ifFalse:[
inTruck isEmpty ifTrue:

self print:[((inTruck printString),
Iexits.')].

inTruck leave: nil timeTo: timeTo.
inTruck <- nil.
self deQinTruck.

95

"Move the truck to the loading area."
IdeQoutTruck Ipti

self moveOutOverFiow: nil.
outTruck isNil ifTrue:[

(pt <- exitQ remove) notNil ifTrue:[
outTruck <- pt.

]ifFalse:r
(outTruck size >= truckFull or:

loadQ isEmpty and:
[self loadingBodys not 1 3

ifTrue:
self print:[((outTruck printString),

Iexits.',]
outTruck leave: truckNext

timeTo: timeTo.
outTruck <- nil.
self deQoutTruck.

"Are there Bodies being loaded."
loadingBodys

A loadW inject: false into: [:p :wI
p or: [w body notNil]

IoutTruckLoadable IbdylnTruckI
(outTruck notNil and: [loadQ notEmpty)

ifTrue:[
bdylnTruck <- outTruck size.
bdylnTruck < (truckFull - 1) ifTrue:[

A true
]ifFalse:[

(bdylnTruck < truckFull
and: [self loadingBodys not]

ifTrue:[
A true

A false

IprocDemon
A nil.

freeReTask: wl 1I
1 <- List new.

wl do: (:w I w body isNil ifTrue:[
1 add: (wl remove: w)

self reTask: 1

Iput: body by: worker on: outQ
self put: body by: worker

96

%

on: outQ msg: nil

put: body on: outQ
self put: body by: nil

on: outQ msg: nil

getBy: worker from: inQ
A self getBy: worker from: inQ

msg: nil

put: body by: worker on: outQ msg: msg
(body notNil) ifTrue: [

msg notNil) ifTrue:
self msg: msg wkr: worker bdy: body.

outQ add: (body deathAt)
put: body

].
"aquire a body from the inQ"

getBy: worker from: inQ msg: msg I body
((body <- inQ remove) notNil) ifTrue: [

self msg: msg wkr: worker bdy: body.
]I.
A body

msg: msg wkr: worker bdy: body
msg notNil) ifTrue: [

self pr:[((worker printString), I
msg, I of(body printString), '.')]

i:
I free: tobj when: bdy from: wkrs

bdy isNil ifTrue: [
(tObj workers) do: [:w "reTask"

wkrs remove: w

listTrucks I tl que wkr tsk b I
------------------------------- ' display.

idlers=', (iTask idlers printString)
]display.

P inTrk=', (inTruck printString),
I enterQ=', (enterQ printString)

]display.

[' unloadW=', (unloadW printString)
] display.

helpers=', (helpers printString),
helpT=', (helpT printString)

]display.

97

P loadQ=', (loadQ printString)]display.
P loadW=', (loadW printString)]display.

PoutTrk=', (outTruck printString),
I exitQ=', (exitQ printString)

]display.
-- '] display.

V --------------------------- Demon Queue listing messages."
countls

A countofbdys.

countBdy: b
countofbdys <- countofbdys + 1.
Al

IcountQue: cjue Icnt
* -countofbdys <- countofbdys + (cnt <- que size).

A cnt

1countWrks: wl b cnt bset
cnt <- 0.
bset <- Set new.
wl do: [:wkr I

(b <- wkr body) notNil ifTrue:
(bset includes: b) ifFalse:[

bset add: b.
cnt <- cnt + 1.
countofbdys <- countoffbdys + 1.

A cnt
countTruckQ: trkQ Icnt

cnt <- 0.
trkQ do: [:trk Icnt <- cnt +

(self countTruck: trk) 1
A cnt

IcountTruck: trk Icnt
trk riotNil ifTrue: [A r size:i
AO0

qcntReport
(@ Queues:', qname,

'@@@', (self printString))print.
C@ ',(self timels printString), qcnt,

'$$$'. (self printString))print.

append: tsk to: cnt It
qcnt <- qcnt, (cnt printString),
qname <- qname, tsk,

listTask: taskL Iti que wkr tsk cnt reportP

98

tl <- taskL first.
[Ul notNil] whileTrue:

que <- ti first.
wkr <- ti next.
tsk <- ti next.
reportP <- ti next.
reportP ifTrue:[

(@ ',(tsk printString),
W=' , (wkr printString),

Q=,(que printString))print.

cnt <- (self countQue: que).
cnt <- cnt + (self countWrks: wkr).
self append: (tsk printString) to: cnt.

@.
', (tsk printString),

I ~W=' , (wkr printString),
I Q=', (que size printString)) print.

ti <- taskL next.

listlnTruck cnt
countofbdys <- 0.
qcnt <-
qriame <-
self pr:[' [',(self printString),

"adds the time."
-- U

iTask reportOnWorkers.

cnt <- (self countTruck: inTruck).

(I @ unloadW=', (unloadW printString))print.

cnt <- cnt + (self countWrks: unloadW).
self append: IinTrk' to: cnt.

(' @ helpers=', (helpers printString))print.

listoutTruck Itl que wkr tsk b cnt

cnt <- (self countQue: loadQ).

(I @ loadW=', (loadW printString))print.

cnt <- cnt + (self countWrks: loadW).
self append: 'load' to: cnt.

cnt <- (self countTruck: outTruck).
cnt <- cnt + (self countTruckQ: exitQ).

99

self append: IoutTrk' to: cnt.

self append: 'Bdys' to: (self countls).
self append: 'ThruPut' to: (goneQ size).

self countls > max~odys
ifTrue: fowardirig <- true
ifFalse: (fowarding <- false J

self qcntReport.

IlistOutTC tl que wkr tsk b cnt

self countls > maxBodys
ifTrue: [fowarding <- true
ifFalse: [fowarding <- false)

self qcntReport.

100

Class DemonTask

------------- Process to dispLay queues."
Class DemonTask :CollectionClass

I rate go name deltaBodys n~odys
Sstartup

deltaBodys <- Clock new.
nBodys <- 0.
rate <- 60.
go <- true.

Iprefix: echelon
^echelon, 'Demon'.

Irate: r
rate <- r.

body: b delta: ck
deltaBodys <- deltaBodys + ck.
nBodys <- nBodys + 1.

Istop
self listWorkerTask.
super terminate.

Inext
self procDemon.
self listWorkerTask.

@ Bodys: of
(self timels printStriig),
(deltaBodys printString),'
(nBodys printString),'
(self cp printString)]display.

self lightsout ifTrue: [
self sch: (self morning: (self timels))

]ifFalse:(
self schedule: rate

101

Class Environment

Class Environment :Identity IrootCp
startUp Ici 11"

res I "store the restart instance."
Iprint.

self sch: ((res <- (self

create: ReStart)) start).

prfxrootCp <- res go:self.

Inext Iwl W1
'reStart timels=',

(self timels printString))display.

(wi <- (self create: ReStart)
.4 reStart: self) notNil ifTrue:[

' workLoad =-1
(wl printString)] display.
rootCp reStart: wl.
Atrue

self terminateNow.

-10

Class GenTruck

to Adds bodies to truckQueue."
Class GenTruck :CollectionClass

I queue rate bdys fill uniFill
trucks timeTo beenToCP i

[startUp
beenToCP <- 0.
rate <- 25. "default self schedule rate"
bdys <- 0. "number of bodies to consume."
trucks <- 0. "number of self schedules."
timeTo <- 10. "how long get to CP."
fill <- 0.

I timeTo: t
timeTo <- t.

I setIP
beenToCP <- 2.

i setCP
beenToCP <- 1.

I rate: r
rate <- r.

i rate
Arate

I prefix: echelon
Aechelon, 'gen'

It deliver all bodies in less than 6 hours."
bdys: b

bdys <- b. "work load."
(bdys < 7200 and: [bdys > 0]) ifTrue: [

rate <- 7200 / bdys roundTo: 1.
]ifFalse:[

rate <- 1.
I.
['Nbodys = ', (bdys printString)]display.

i trucks: b
trucks <- b.

I queue: q
queue <- q.

I fill: min to: max a b I
b <- max + 0.5.
fill <- min.
uniFill <- Uniform new initialize

from: a to: b.

"Scheduling"
next

bdys > 0) ifTrue:

103

-"-/ ' -'-.,"..?.'' v v , ° . . -' ',- " ': o'-: .''.' ". .'i. '-S i .'..'--"o. ° " ' -7

beenToCP > 0 ifTrue:
bdys > 24 ifTrue:

(bdys <- bdys - 24.
fill <- 24.
self schedule: rate]
ifFalse: [fill <- bdys].

self makeTruck.
ifFalse: C

fill <- uniFill next roundTo:l.
((bdys - fill) >= 0

ifTrue:
bdys <- (bdys - fill).
self makeTruck.
self schedule: rate

ifFalse: [
fill <- bdys.
self makeTruck.
self print:[((self printString),

Terminates.')].

ifFalse:
((trucks <- trucks - 1) < 0) ifTrue: [

self print:[((self printString),
I Terminates.').

]ifFalse: [
self makeTruck.
self schedule: rate

"Private"
makeTruck I t2 I

self nightTime ifTrue: [
t2 <- timeTo * 2.

]ifFalse:[
t2 <- timeTo.I.

'>> makeTruck t2=', (t2 printString),
I fill=', (fill printString))print.

A(((((self create: Truck) setCP: (self cp)
) goingTo: queue
beenToCP: beenToCP

) fill: fill
) schedule: t2. "How long it takes to

get to the queue."

104

IL~&:

Class GlobalData

Class GlobalData : UserData
I evQ "The environment Queue."
uniqueName "Dictionary of unique name counters."
curTime "Current Time Clock."
prTime "Clock as of the last print occured."1

new
evQ <- SList new.
uniqueName <- Dictionary new.
curTime <- Clock new incHour: 10.
prTime <- Clock new.

Iprint: s
((prTime =curTime) not) ifTrue:

('@ 1, (curTime printString))print.
prTime set: curTime.

@ ',S)print.

"Accesing"
Itimels

, curime
eventQ

AevQ
IuserData

A self.

"Setting"
timels: t

A curime <- t.
"---- Return a post fix to make the name unique."
genNum: prefix I n I

(n <- uniqueName at: prefix
ifAbsent: [nil]) isNil ifTrue: [n <- 0]

uniqueName at: prefix put: (n <- n +1)

An.

105

Class Identity

Class Identity :UserAccess
I name globalData I

idStartUp: gd
"Every one must get access to the data store."
globalData <- gd.
self userSetUp: (globalData userData).
name <- self class printString.

I idStartUp: gd name: aName
"Every one must get access to the data store."
globalData <- gd.
self userSetUp: (globalData userData).
name <- (aName, ((globalData genNum: aName)

printString)).

make a new instance if a simulation object with the
name fixed up and the global data in place.

create: aClass I inst pre I

inst <- aClass new.
((pre <- inst prefix: (self printString)) isNil

ifTrue: C pre <- inst prefix].

inst idStartUp: (self globalData)
name: pre.

inst startUp.
Ainst

"report output"
I pr: block

A self

I print: block
globalData print: (block value).

"Accessing"
globalData

AglobalData

timeIs
A globalData timeIs

I timeIs: t
A globalData timeIs: t

asString
Aname

printString
Aname

name: n

106

-."-.' ' -. -.".-'o."-.,' . -." "...-.,......-........"-........"..,..-....-....-...".-......-.-. °-.--'-.

name<-n.

Ipref ix
A self class printString

Iprefix: mother
Anil

"Scheduling"
Ischedule

(globalData eventQ) add: (globalData timels)
put: self

Isch: clock
(globalData eventQ) add: clock

put: self
IscheduleAfter: clock

self sch: (clock + (globalData timels)).

scheduleNow
self sch: (globalData timels)

schedule: hour after: min IC
(min < 100 and: [hour < 24J

ifTrue: [self sch:((((Clock new
)set: (globalData timels)

)incMin: min
)incHour: hour)

JifFalse: ['schedule error' print 3.
Ischedule: min

self sch: (((Clock new
)set: (globalData timels)

)incMin: min)

schSec: sec
self sch: (((Clock new

)set: (globalData timels)
)incSec: sec)

107

Class IdleTask

Class IdleTask :Identity
"Data" I

cp
idlers
timesIdle maxIdle go "for ending"
allWorkers

[prefix: echelon
A echelon, 'Idle'

startUp
idlers <- List new.
allWorkers <- List new.
maxIdle <- 12.
go <- true.
timesIdle <- 0.
self start.

setCP: cpoint
cp <- cpoint

personal: n
'personal = ', (n printString)]display.

n timesRepeat: [allWorkers
• .. add:(idlers add: ((cp create: Worker)

setCP:cp))]

reportOnWorkers Is ni
s <- ''
n<-l.
allWorkers do: :w I

s <- s, ' '1 (w printTime).
(n <- n + 1) > 3 ifTrue:

(' @', s)print.5 <- ',.

n<-1.

n > 1 ifTrue: [(' @' s)print]

idleWorker: w
w sleeping ifFalse: [

idlers isEmpty ifTrue: [
maxIdle > 0 ifTrue:

V., go ifTrue: C self schedule: 5]
ifFalse: [self schedule: 60.

go <- true.

w setIdle.
idlers add: w.

108

Iidlers
, idlers.

next Irti
timesldle <- timesldle + 1.
rt <- cp reTask: idlers.

timesldle >= maxldle ifTrue:
self stopable ifTrue:[

maxldle <- 0.
cp stop.
S(self printString),

terminates.']display.

go <- false.

109

Class IntermediatePoint

Class IntermediatePoint :CpTrucks
"Data" I

evacW ckIdW idW "Workers doing tasks"
packW moveW ddW miscW
"Places to put bodys."
evacQ ckIdQ idQ goneQ
packQ moveQ ddQ miscQ loadQ
taskList "a list of triples

(see makeTaskList) ."
cpList "a list if objects

for restarting."
battleZone "Lights out at night."

"Methods"I
[prefix: echelon I ch I

IP I echelon ', echelon]display.

ch <- echelon at:l.
ch == $x ifTrue:
A (echelon copyFrom: 2 to: (echelon size)),

A^IXX x 'I

I startUp
P IP I startUp ' (self printString)]display.

super startTrucks.
self startQueues.

- self taskList: (taskList self makeTaskList).
battleZone <- true.

truckFull: bdys at: clock
(((((((self create: GenTruck) setCP: self

)queue: (self enterQ)
) setCP "beenToCp"
timeTo: 180 "180 minutes"

) bdys: bdys
) rate: 0

) sch: clock.
IA truckFull: ', (bdys printString), ' at:

(clock printString))print.
,self.

restart: wl bdys trk cl
'IP cpList = ', (cpList printString)

]display.
c[IP wl e (wl printString)]display.Scl <- List new.

cpList do: [:c f cl add: c]. "Copy."
wl do: [:x

110V Ii

7

'IP x = ', (x printString),
cl = ', (cl printString)

)display.
cl first = self ifTrue: [

(cl remove) selfReStart: x
]ifFalse:[

x first = 'I' ifTrue: [cpList add: (
((self create: IntermediatePoint
) truckNext: (self enterQ)") deceased: x)

]ifFalse:[
x first = 'C' ifTrue: [cpList add: (

((self create: CollectionPoint
) truckNext: (self enterQ)

) deceased: x)
]ifFalse:[

(cl remove) reStart: xI I I.

I selfReStart: w trk bdys ch
['IPI w = ', (w printString)]display.
ch <- w first.
bdys <- w next.

trk <- (((((self create: GenTruck) setCP: self
)queue: (self enterQ)

) fill: (self truckMin)
to: (self truckFull)

bdys: bdys
) schedule: 1.

(((((self create: GenTruck) setCP: self
)queue: (self exitQ)
rate: (trk rate)

) trucks: (bdys / 6 roundTo:l)
schedule: 30.

deceased: list reStart: rs I car I

list remove.
C 'IP list=', (list printString)]display.
cpList <- List new.

car <- list remove.
['IP car=', (car printString)]display.
car first = 'I' ifTrue: [

cpList add: (self selfStart: car).
]ifFalse:[

['error: IP must be first.']display.
.°] ,

[list first notNil] whileTrue:
car <- list remove.

iii

['IP car=', (car printString)]display.
.1car first = 'I' ifTrue:

cpList add: (
(self create: IntermediatePoint
) truckNext: (self enterQ)

deceased: car
]ifFalse:[

car first = 'C' ifTrue: [
cpList add: (

(self create: CollectionPoint
truckNext: (self enterQ)

) deceased: car
]ifFalse:[

['IP error: bad input car= ',
(car printString),
cdr= ', (list printString)

]display.

['cpList = ', (cpList printString)]display.
rs fowardTrucksTo: self.

* IselfStart: list I foo pers bdys time trkl

foo <- list remove.
pers <- list remove.
bdys <- list remove.

.* time <- list remove.

trk <- (((((self create: GenTruck) setCP: self
)queue: (self enterQ)

) fill: (self truckMin)
to: (self truckFull)

bdys: bdys
schedule: 1.

((((((self create: GenTruck) setCP: self
) queue: (self exitQ)
timeTo: time

rate: (trk rate)
) trucks: 20

) schedule: 30.

(((self iTask: (self create: IdleTask))
setCP: self

) personal: pers
scheduleNow.

((self demon: (self create: DemonTask))
setCP: self

schedule: 10.

makeTaskList I 1 I
1 <- List new.

112

1 add: (self makeTL: evacQ
with: evacW task: Evac).

1 add: (self makeTL: ckldQ
with: ckldW task: CkId).

1 add: (self makeTL: moveQ
with: moveW task: Move).

1 add: (self xnakeTL: idQ
with: idW task: Id).

1 add: (self xnakeTL: packQ
with: packW task: Pack).

1 add: (self makeTL: ddQ
with: ddW task: Dd).

1 add: (self makeTL: miscQ
Alwith: mniscw taskN: Misc).

ll'.:: ke the queues for the Collection Point."
IstartQueues

evacQ <- self unloadQ.
idQ <- List new.
ckldQ <- List new.

moveQ <- List new.
packQ <- List new.
ddQ <- List new.
miscQ <- List new.
gorieQ <- List new.
loadQ <- self loadQ.

* "Workers"
evacW <- List new.
!dW <- List new.
ckldW <- List new.

moveW <- List new.
*packW <- List new.

ddW <- List new.
miscW <- List new.

lightsOut
battleZone ifTrue: Aself nightTime J
A false.

NEXT

procEvac: tObj I wkr bdy I
wkr <- tObj workers first.
bdy <- tObj body.
tObj body: nil.

bdy notNil ifTrue:[

113

bdy beenToCP ifTrue:[
self put: bdy

by: wkr
on: ckIdQ
msg: 'completes Evac#, on'.

jifFalse:[
self put: bdy

by: wkr
on: idQ

msg: 'completes Evac form DD1077, on'.
] .

(self testIdle: tObj) ifTrue:[
bdy <- nil.

]ifFalse: [
bdy <- self getBy: wkr from: evacQ

msg: 'assigns Evac # to'.].
self free: tObj when: bdy from: evacW.

A bdy.

procId: tObj I wkr bdy I
wkr <- tObj workers first.
bdy <- tobj body.
tObj body: nil.

self put: bdy
by: wkr
on: packQ
msg: 'completes Id and DD forms, on'.

(self testIdle: tObj) ifTrue:[
bdy <- nil. "reTask"

]ifFalse: [
bdy <- self getBy: wkr from: idQ

msg: 'starts to Id'.

self free: tObj when: bdy from: idW.
4A Abdy.

procCkId: tObj I wkr bdy
wkr <- tobj workers first.

A.- bdy <- tObj body.
tObj body: nil.

self put: bdy

by: wkr

114

[on: moveQ
msg: 'completes CkId and DD form~s, on'.

self testldle: tobj) ifTrue:[
bdy <- nil. "reTask"

]ifFalse:[
bdy <- self getBy: wkr from: ckldQ

msg: 'starts to CkId'.

self free: tObj when: bdy from: ckldW.
Abdy.

procPack: tObj Iwkr bdy

wkr <- tObj workers.
bdy <- tobj body.
tobj body: nil.

self put: bdy by: wkr
on: ddQ
msg: 'completes Moving, of '

(self testldle: tObj) ifTrue:[
bdy <- nil. "reTask"

]ifFalse:
bdy <- self getBy: wkr from: packQ

msg: 'start to Pack and Move'.

self free: tObj when: bdy from: packW.
A bdy.

procMove: tObj Iwkr bdy

wkr <- tObj workers.
bdy <- tobj body.
tob) body: nil.

self put: bdy by: wkr
on: ddQ
msg: 'finishes Moving, of '

(self testldle: tObj)ifTrue: (
bdy <- nil.

]ifFalse:
bdy <- self getBy: wkr from: moveQ

msg: 'start to Move'.

self free: tObj when: bay from: moveW.

Abdy.

procDd: tObj Iwkr bdy

115

wkr <- tObj workers first.
(bdy <- tObj body) notNil ifTrue: [bdy setIP I
tObj body: nil.

self put: bdy by: wkr
on: loadQ
msg: 'completes DD175, for'.

self put: bdy by: wkr on: miscQ.

(self testldle: tObj) ifTrue: E
bdy <- nil

]ifFalse: [
*bdy <- self getBy: wkr from: ddQ
*msg: 'starts to fill out DD175 for'.

self free: tobj when: bdy from: ddW.
Abdy.

procMisc: tObj Iwkr bdy

wkr <- tobj workers first.
tObj body: nil.

self put: bdy by: wkr on: goneQ.

(self testldle: tObj) ifTrue: [
bdy <- nil.

Jifalse:[
bdy <- self getBy: wkr from: miscQ

msg: 'does the miscellaneous task.'.

self free: tobj when: bdy from: miscW.
Abdy.

Ilist
self listlnTruck.
self listTask: taskList.

@ goneQ size=',
(goneQ size printString))print.

self listOutTruck.

IlistWorkerTask
self listlnTruck.
self listTask: taskList.
(@ goneQ size=',,

(goneQ size printString))print.
self listOutTruck.
(' @ loadw',

4 (self countls printString))print.
self reTask.

116

Class Obj

"This is the root of all simulation objects"
"Note that objects can be listed with 'Obj list'."
Class Obj

[new
Aself.

11

S..

'.:.

117

Class Probability

Class Probability :Obj

I randnum
[initialize

randnum <- Random new randomize.
randnum <- Random new. "

next
Aself sample: randnum next.

first

I getRandom
A randnum next.

]

.J

'. ".

i 118

* Class ReStart

Class ReStart :SuperReStart
IerivObj wrkLoad

Sstartup
A self.

------------------------ Work Load at time=0."
C PO

A(self cpWrks: 8 bdys: 3 routeTime: 7).

Icpl
A (self cpWrks: 8 bdys: 87 routeTine: 7).

'---- TC If

IdIp
Aseif 1: 1,'

1: (self ipWrks: 6 bdys: 4 routeTine: 180)
1: (self cpWrks: 4 bdys: 7 routeTime: 180)

clp 1 1

A self 1: '1,
1: (self ipWrks: 6 bdys: 4 routeTime: 180)
1: (self dIp

l ipC12
A self 1: (self ipBdys: 6) fii"

1: (self cpBdys: 50) "ICl"
1: (self cpBdys: 50) "ic2"f
1: (self cpBdys: 46) "arc [i2cl] ->C3"1

* jipCI3
A self 1: (self ipBdys: 6)

1: (self cpBdys: 60)
1: (self cpBdys: 28
1: (self cpBdys: 59) "arc"

ipC14
A self 1: (self ipBdys: 6)

1: (self cpBdys: 56
1: (self cpBdys: 28
1: (self cpBdys: 31) "arc"

ipC15
, self 1: (self ipBdys: 6

1: (self cpBdys: 0
1: (self cpBdys: 27)
1: (self cpBdys: 45) "arc"
1: (self cpWrks: 8

bdys: 14
routeTime: 180) "1[c3] - C411

lipC16
A seif 1: (self ipBdys: 6

119

1: (self cpBdys: 0)
1: (self cpBdys: 39)
1: (self cpBdys: 16) "arc"
1: (self cpBdys: 39) "IC4"

I iPCI.7
Aseif 1: (self ipBdys: 6)

1: (self cpBdys: 0)
1: (self cpBdys: 17)
1: (self cpBdys: 56) "@arc"
1: (self cpBdys: 17) "C3"1

ipCI8
Aseif 1: (self ipBdys: 6)

1: (self cpBdys: 11)
1: (self cpBdys: 20)
1: (self cpBdys: 36) "arc"
1: (self cpBdys: 0) 11C31"

IiPI9A self 1: (self ipBdys: 6)
1: (self cpBdys: 25)
1 : (self cpBdys: 8)
1: (self cpBdys: 0) "arc"
1: (self cpBdys: 46) "IC3I"

IiPI0A self 1: (self ipBdys: 6)
1: (self cpBdys: 18)
1: (self cpBdys: 19)
1: (self cpBdys: 7) "arc"
1: (self cpBdys: 35) "IC3II

"t---- TCII
Ici2TC

A self 1: (self tcBdys: 4)
1: (self cpBdys: 5)
1: (self

1: (self ipBdys: 3)
1: (self

1: (self ipBdys: 1)
1: (self cpBdys: 2)

-------------------- Access-"

Istart
* self timels: (self ciltime).

self print: [-------- CI 1------------'
A"self ci2time.

reStart: env
envobj <- env.
((self printString), ' ,(envObj printString)

] display.
self testC12 ifTrue: ["wrkLoad].
self testC13 ifTrue: [",wrkLoad].
self testC14 ifTrue: [A wrkLoad].

120

.Rp

self testC15 ifTrue: [AwrkLoad].
self testC16 ifTrue: [AwrkLoad].
self testC17 ifTrue: [A wrkLoad].
self testCl8 ifTrue: (A wrkLoad].
self testC19 ifTrue: [AwrkLoadj.
self testCIlO ifTrue: [A wrkLoadj.

self print: ----- Terminate.---------'1
Anil

-------------------------- Private."

ItestC12 I nextTime
nextTime<- self ci3time.
(nextTime <= self timels) ifTrue:

(Afalse]. "been here before."1
self print: [' ---- CI 2------'I]
envObj sch: nextTime. "Store Time."
wrkLoad <- self ci2. "more Workload."
A true "ok, Run"

V testC13 InextTime
nextTime<- self ci4time.
(nextTime <= self timels) ifTrue:

[A false]. "been here before."1
self print: [I----CI 3------ I].
envObj sch: nextTime. "Store Time."
wrkLoad <- self ci3. "more Workload."
A true "ok, Run"

testC14 jnextTime
nextTime<- self ci~time.
(nextTime <= self timels) ifTrue:

(^false J. "been here before."
self print: ['----CI 4------'I]
envobj sch: nextTime. "Store Time."
wrkLoad <- self ci4. "more Workload."
A true "ok, Run"

testC15 InextTime
nextTime<- self ci6time.
(nextTime <= self timels) ifTrue:

[A false]. "been here before."1
self print: [----- CI 5------'
envObj sch: nextTime. "Store Time."
wrkLoad <- self ci5. "more Workload."
A true "ok, Run"

ItestC16 InextTime
nextTime<- self ci7time.
(nextTime <= self timels) ifTrue:

(A false]. "been here before."1
self print: [---- CI 6------'

121

IlLk A

envObj sch: nextTime. "Store Time."
wrkLoad <- self ci6. "more Workload."
Atrue "ok, Run"

testC17 [nextTime I
nextTime <- self ci8time.
(nextTime <= self timeIs) ifTrue:

([false J. "been here before."
self print: [' ----- CI 7 ----- '].
envObj sch: nextTime. "Store Time."
wrkLoad <- self ci7. "more Workload."
Atrue "ok, Run"

testC18 I nextTime [
nextTime<- self ci9time.
(nextTime <= self timeIs) ifTrue:

(Afalse]. "been here before."
self print: ['-.....-CI 8 ------' .
envObj sch: nextTime. "Store Time."
wrkLoad <- self ci8. "more Workload."
A true "ok, Run"

testC19 I nextTime I
nextTime<- self cilOtime.
(nextTime <= self timeIs) ifTrue:

[Afalse]. "been here before."
self print: ' ----- CI 9 ----- '].
envObj sch: nextTime. "Store Time."
wrkLoad <- self ci9. "more Workload."
^true "ok, Run"

testCIl0] nextTime [

nextTime<- self stopTime.
(nextTime <= self timeIs) ifTrue:

[Afalse 3. "been here before."
self print: [' ----- CI 10 ----- '].
envObj sch: nextTime. "Store Time."
wrkLoad <- self cilo. "more Workload."
A true "ok, Run"

'122

Class RestartTools

Class RestartTools :Identity
tcWrks: wrks bdys: bdys

-------- List makers."
self 1: IT' 1: wrks 1: bdys

IipWrks:-wrks bdys: bdys routeTime: t
A self 1: 111 1: wrks 1: bdys 1: t

IcpWrks: wrks bdys: bdys routeTime: t
A Self 1: 'C' 1: wrks 1: bdys 1: t

IipWrks: wrks bdys: bdys
-,A self 1: 111 1: wrks 1: bdys 1: 180

IcpWrks: wrks bdys: bdys
A self 1: 'C' 1: wrks 1: bdys 1: 180

IcpBdys: b
ASeif 1: 'p1 1: b

IipBdys: b
A self 1: (self 1: 'Pl 1: b)

ItcBdys: b
A self 1: (self 1: 't' 1: b)

1: a 1 I
1 <- List new.
1 add: a.
Al1

1 <- List new.
1 add: a.
1 add: b.
Al1

1: la1: b1: c Il
1 <- List new.
1 add: a.
1 add: b.
1 add: c.
Al1

1: a1: b1: c1: d l
1 <- List new.
1 add: a.
1 add: b.
1 add: c.
1 add: d.

J~ Al

1:a 1:b 1:c 1:d 1:e 1st
1st <- List new.
1st add: a.
1st add: b.
1st add: c.
l st add: d.
1st add: e.

123

Al st

1:a 1:b 1:c 1:d 1:e 1:f I st
1st <- List new.
1st add: a.
1st add: b.
1st add: c.
1st add: d.
1st add: e.
1st add: f.
-1st

I1:a 1:b 1:c 1:d 1:e 1:f 1:g I st
1st <- List new.
1st add: a.
1st add: b.
1st add: c.
1st add: d.
1st add: e.
1st add: f.
1st add: g.
l'st

1:a 1:b 1:c 1:d 1:e 1:f 1:g 1:h I st
1st <- List new.
1st add. a.
1st add: b.
1st add: c.
1st add: d.
1st add: e.
1st add: f.
1st add: g.
1st add: h.
"1lst

1:a 1:b 1:c 1:d 1:e 1:f 1:g 1:h 1:i I st
1st <- List new.
1st add: a.
1st add: b.
1st add: c.
1st add: d.
1st add: e.
1st add: f.
1st add: g.
1st add: h.
1st add: i.
A1st

1:a 1:b 1:c 1:d 1:e 1:f 1:g 1:h 1:i 1:j I st
1st <- List new.
1st add: a.
1st add: b.
1st add: c.
1st add: d.
1st add: e.
1st add: f.
1st add: g.
1st add: h.

124

N. 4 Iit ,'

1st add: i.
ist add: j.
^ist

1:a 1:b 1:c 1:d 1:e l:f 1:g 1:h 1:i 1:j 1:k I 1st I
1st <- List new.
ist add: a.
1st add: b.
1st add: c.
1st add: d.
1st add: e.
1st add: f.
1st add: g.
ist add: h.
1st add: i.
"st add: j.
1st add: k.
Al st

I 1:a 1:b 1:c 1:d 1:e 1:f 1:g 1:h
1:i 1:j 1:k 1:1 i 1st I

1st <- List new.
1st add: a.
1st add: b.
1st add: c.
1st add: d.
1st add: e.
1st add: f.
1st add: g.
1st add: h.
1st add: i.
ist add: j.
1st add: k.

. 1st add: 1.
Aist

125

Class Simulation

Class Simulation :Obj
I globalData evQ go envobj

[startUp
globalData GlobalData new.
envObj <- ((Environment new

idStartUp: globalData) startUp).
evQ (globalData eventQ).
go true.

I process I time process
time evQ key.
globalData timeIs: time.
process evQ remove.
(go and:-[process notNil]) ifTrue:

go _ globalData nextPrint: process.
process next.
Atrue

'exit go= ', (go printString)]display.
smal]talk sh: 'mv _go _stop'.
A false

.4

126

-< . % ' . ,' - o "- *. " V , . .'% " ' "" " ", . " " " " '-. -z ' ''.'" '

Class SuperReStart

Class SuperReStart :RestartTools
I node i

go: env

A(env create: CollectionPoint)

deceased: (self cp)
I I

A A(env create: IntermediatePoint)
• deceased: (self ip)
• reStart: self.

- *

A A(env create: TemporaryCemetery)
• deceased: (self tc)

A A(env create: CollectionPoint)
* deceased: (self cp0)

A A(env create: CollectionPoint)
• deceased: (self cpl)
,
• A(env create: IntermediatePoint)
• deceased: (self dIp)

- * A(env create: IntermediatePoint)
S* deceased: (self cIp)

*, *
I,

cp
Aself cpWrks: 8 bdys: 54 routeTime: 7.

tc
Aself 1: (self tcWrks: 6 bdys: 6

ip

Aself 1: 'I'

1: (self ipWrks: 7 bdys: 0
routeTime: 180) "il"

I fowardTrucksTo: p
node <- p.
self trkl.
self trk2.

,,

A messages to place CP trucks on the event queue
A have the form:
A
^ node truckFull: nBdys at:(((Clock new)day: dd)hour: hh)

127

",

45L. * -. 5

Itrkl
node truckFull: 31 at: (((Clock new)day:4)hour:ll).
node truckFull: 5 at: (((Clock new)day:4)hour:l2).
node truckFull: 27 at: (((Clock new)day:5)hour:09).

node truckFull: 14 at: (((Clock new)day:5)hour:1l).
node truckFull: 14 at: (((Clock new)day:6)hour:09).
node truckFull: 1 at: (((Clock new)day:6)hour:ll).

Itrk2
node truckFull: 30 at: (((Clock new)day:6)hour:12).

H-------------------------------- Other Work Loads.

ci2
A self cpBdys: 20

Ici3

ci4 A self cpBdys: 24
A self cpBdys: 17

Ici5
A self cpBdys: 45

Ici6
A self cpBdys: 25

Ici7
A self cpBdys: 48

ICA8
A self cpBdys: 66

Ici9
A self cpBdys: 104

* I cilo
A self cpBdys: 0

----- ----- ---- Times of each CI."1
Iciltime "'StartUp Time"

A ((Clock new day:0) hour:04) min:0

* ci2time
A((Clock new day:0) hour:22) min:0

* I ci3time
A((Clock new day:1) hour:04) min:0

* I ci4time
A ((Clock new day:1) hour:16) min:0

Ici~time
-((Clock new day:2) hour:04) min:0

* ci6time
A ((Clock new day:2) hour:16) min:0

Ici7time
A ((Clock new day:3) hour:04) min:0

128

ci8time
A ((Clock new day:3) hour:16) min:O

ci9time
A((Clock new day:4) hour:04) min:O

Icilotime
A((Clock new day:4) hour:16) min:O

IstopTime "terminate Time"
A.((Clock new day:1O) hour:OO) min:O

112

p.N

I

Class Task

Class Task :CollectionClass
I body

workerList "A List of the
workers moving the body."

name
uniTime

[startUp
body <- nil.
uniTime <- Uniform new var20: (self taskTime).

I taskClock I tck I
tck <- uniTime taskClock.
A tck

name: n
Aname <-n

I printString
A name.
body isNil ifTrue: [nam]

ifFalse:[A(name,
'(', (body printString), ')')].

s Ibody: b
body <- b

.°body
A body

setWorking I w
w <- workerList first.
w notNil] whileTrue:

w setWorking.
w <- workerList next]J.

workers
A workerList.

I workers: wl
workerList <- wl.

I reSchedule: wobj I t i
body notNil ifTrue: [

(t <- wObj taskClock) notNil
ifTrue:[wObj scheduleAfter: t
ifFalse:

['error...taskClock = nil' print.
wObj schedule: (wObj taskTime)].

ifFalse: [
self reTask: workerList.

130

Cls Te- orarVwemetery

Class TemporaryCemetery Cruk

"IData"I
evacW ckldW idW "Workers doing tasks"
packW moveW "Workers doing tasks"
disRobeW fingerpW

*dTailIdW shroudW
platesW digW
mv2siteW dd3x5W
shipPeW inCoverW

evacQ ckldQ idQ "Places to put bodys."1
packQ moveQ "Places to put bodys."1
disRobeQ fingerpQ
dTailIdQ shroudQ
platesQ notDugQ digQ dugQ
mv2siteQ dd3x5Q
shipPeQ inCoverQ
groundQ

taskList "a list of triples (see makeTaskList) ."
cpList "a list if objects for restarting."

"'Methods" I
prefix

A t

IstartUp
[ITC IstartUp ', (self printString)]display.

super startTrucks.
self startQueues.

o timesRepeat: [self addBodyon: evacQ)
o timesRepeat: [self addBodyon: mv2siteQ 3

self taskList: (taskList <- self makeTaskList).

ItruckFull: bdys at: clock
((((((self create: Genruck) setCP: self

)queue: (self enterQ)
setCP "beenToCp"I

timeTo: 180 "1180 minutes"
bdys: bdys
rate: 0

)sch: clock.
ItruckFull: ', (bdys printString),

Iat: ',(clock printString))print.
A self.

IreStart: wl Ibdys trk w
'TC IcpList = ,(cpList printString)

131

]display.

cpList do: [:x
'TC I wl = ', (wl printString)

]display.
w <- wl remove.

'TCI x = ', (x printString),
I w = ', (w printString)

)display.
x = self ifTrue:

[self selfReStart: w]
ifFalse: [x reStart: w].

selfReStart: w I trk c b I
'TCI w = ', (w printString)]display.

c <- w first.
b <- w next.

((((self create: GenTruck) setCP: self
) queue: (self enterQ)
fill: (self truckMin)

to: (self truckFull)
) bdys: b

) schedule: 1.

deceased: list reStart: rs car
['TC list=', (list printString)]display.
cpList <- List new.

"do self first"
car <- list remove.
['TC car=', (car printString)]display.
car first = 'T' ifTrue: [

cpList add: (self selfStart: car).
]ifFalse:[

['error: TC must be first.']display.

[list first notNil] whileTrue: [
car <- list remove.
car first = 'I' ifTrue: [

cpList add: (((self
create: IntermediatePoint
) truckNext: (self enterQ)

deceased: car)
]ifFalse:[

car first = 'C' ifTrue:
cpList add: (((self

create: CollectionPoint
truckNext: (self enterQ)

) deceased: car

132

,J. ', / .', 4 .' , ,,;,-;. .",,

b~

]ifFalse:
['TC error: bad input car= ',

(car printString),
I cdr= ', (list printString)

]display.

['cpList = ', (cpList printString)]display.
rs fowardTrucksTo: self.

selfStart: list I foo pers bdys
foo <- list remove.
pers <- list remove.
bdys <- list remove.

* (((((self create: GenTruck) setCP: self
queue: (self enterQ)

) fill: (self truckmin) to: (self truckFull)
bdys: bdys

schedule: 1.

(((self iTask: (self create: IdleTask))
setCP: self

) personal: pers
scheduleNow.

((self demon: (self create: DemonTask))
setCP: self

schedule: 10.

makeTaskList 1 1 1
1 <- List new.

1 add: (self makeTL: evacQ
with: evacW
task: Evac

1 add: (self makeTL: digQ
with: digW
taskN: Dig

1 add: (self makeTL: ckIdQ
with: ckIdW
task: CkId

1 add: (self makeTL: moveQ
with: moveW
task: Move

1 add: (self makeTL: idQ
with: idW
task: Id

1 add: (self makeTL: packQ
with: packW
task: Pack

133

1 add: (self makeTL: disRobeQ
with: disRobeW
task: Disobe)

1 add: (self makeTL: fingerpQ
with: fingerpW
task: Fingerp)

1 add: Cself makeTL: dTailIdQ
with: dTailIdW
task: DTailId)

1 add: (self makeTL: shroudQ
with: shroudW
task: Shroud

1 add: (self makeTL: platesQ
with: platesW
task: Plates)

1 add: (self makeTL: mv2siteQ
with: mv2siteW
task: Mv2site)

1 add: (self znakeTL: dd3x5Q
with: dd3x5W
task: Dd3x5

1 add: (self makeTL: shipPeQ
with: shipPeW
taskN: ShipPe)

1 add: (self makeTL: inCoverQ
with: inCoverW
task: InCover)

Al

I start e the queues for the Collection Point."

evacQ <- self unloadQ.
idQ <- List new.
ckldQ <- List new.
moveQ <- List new.
packQ <- List new.
disRobeQ <- List new.
fingerpQ <- List new.
dTailIdQ <- List new.
shroudQ <- List new.
platesQ <- List new.
digQ <- List new.
dugQ <- List new.
notDugQ <- List new.
mv2siteQ <- List new.
dd3x5Q <- List new.
shipPeQ <- List new.
inCoverQ <- List new.
groundQ <- List new.

'Workers"~
evacW <- List new.
idW <- List new.

* 134

ckIdW <- List new.
moveW <- List new.
packW <- List new.
disRobeW <- List new.

fingerpW <- List new.
dTailIdW <- List new.
shroudW <- List new.
platesW <- List new.

*. digW <- List new.
mv2siteW <- List new.
dd3x5W <- List new.
shipPeW <- List new.
inCoverW <- List new.

I lightsOut "No lights out."
A false

NEXT

procEvac: tObj I wkr bdy I

wkr <- tObj workers first.
bdy <- tObj body.k.. tObj body: nil.

*-.[bdy notNil ifTrue:[
self put: bdy by: wkr

on: digQ.
bdy beenToCP ifTrue:[

self put: bdy by: wkr
on: ckIdQ
msg: 'completes Evac#, on'.

]ifFalse:[
self put: bdy by: wkr

on: idQ
msg: 'completes Evac form DD1077, on'.] J.

(self testIdle: tObj) ifTrue:(
bdy <- nil.

JifFalse:
bdy <- self getBy: wkr from: evacQ

msg: 'assigns Evac # to'.

self free: tObj when: bdy from: evacW.

Abdy.

procld: tObj I wkr bdy I
wkr <- tObj workers first.

135

bdy <- tObj body.
tObj body: nil.

self put: bdy by: wkr
on: packQ
msg: 'completes Id and DD forms, on'.

(self testIdle: tobj) ifTrue:[
bdy <- nil. "reTask"

]ifFalse: [
bdy <- self getBy: wkr from: idQ

msg: 'starts to Id'.
].
self free: tObj when: bdy from: idW.
Abdy.

procCkId: tObj I wkr bdy I
wkr <- tobj workers first.
bdy <- tobj body.
tObj body: nil.

self put: bdy by: wkr
on: moveQ
msg: 'completes CkId and DD forms, on'.

(self testIdle: tObj) ifTrue:[
bdy <- nil. "reTask"

)ifFalse: [
bdy <- self getBy: wkr from: ckIdQ

msg: 'starts to CkId'.:].
self free: tObj when: bdy from: ckIdW.
Abdy.

procPack: tObj I wkr bdy I

wkr <- tobj workers.
bdy <- tObj body.
tObj body: nil.

self put: bdy by: wkr
on: disRobeQ
msg: 'completes Moving, of'.

(self testIdle: tObj) ifTrue:[
bdy <- nil. "reTask"

]ifFalse: [
bdy <- self getBy: wkr from: packQ

msg: 'start to Pack and Move'.
.

136

A' - . . . - . . - . .. - - .. , . - . - ; - . ' - - . ' " .

self free: tObj when: bdy from: packW.
^bdy.

procMove: tObj I wkr bdy

wkr <- tObj workers.
bdy <- tObj body.
tObj body: nil.

self put: bdy by: wkr
on: disRobeQ
msg: 'finishes Moving, of'.

self testIdle: tObj) ifTrue:[
bdy <- nil.

]ifFalse: [
bdy <- self getBy: wkr from: moveQ

msg: 'start to Move'.1.
self free: tobj when: bdy from: moveW.
Abdy.

procDisRobe: tObj I wkr bdy I

wkr <- tObj workers.
bdy <- tObj body.
tobj body: nil.

self put: bdy by: wkr
on: fingerpQ msg: 'has disrobed'.

(self testIdle: tObj) ifTrue:[
bdy <- nil

]ifFalse: [
bdy <- self getBy: wkr from: disRobeQ

msg: 'starts to disrobed'.

self free: tObj when: bdy from: disRobeW.
A bdy.

procFingerP: tObj j wkr bdy I

wkr <- tObj workers first.
bdy <- tObj body.
tObj body: nil.

self put: bdy by: wkr
on: dTailIdQ
msg: 'completes FingerP, on'.

(self testIdle: tObj) ifTrue:(

137

bdy <- nil.
]ifFalse:

bdy <- self getBy: wkr from: fingerpQ
msg: 'starts to FingerP, of'.

'].

self free: tobj when: bdy from: fingerpW.
A bdy.

procDTailId: tObj I wkr bdy I

wkr <- tObj workers first.
bdy <- tObj body.
tObj body: nil.

self put: bdy by: wkr
on: shroudQ
msg: 'completes DTailId, on'.

(self testIdle: tObj) ifTrue:[
bdy <- nil.

]ifFalse:[
bdy <- self getBy: wkr from: dTailIdQ

msg: 'starts to DTailId, of'.
.Ti.

-4/ self free: tObj when: bdy from: dTailIdW.
(j Abdy.

procShroud: tObj I wkr bdy I

wkr <- tObj workers.
bdy <- tobj body.
tObj body: nil.

self put: bdy by: wkr
on: platesQ
msg: 'completes Shroud, on'.

(self testIdle: tObj) ifTrue:[
bdy <- nil.

]ifFalse: [
bdy <- self getBy: wkr from: shroudQ

j
4 msg: 'starts to Shroud, of'.

self free: tObj when: bdy from: shroudW.
A bdy.

procPlates: tObj I wkr bdy I

138

,g0.4

wkr <- tObj workers first.
bdy <- tobj body.
tObj body: nil.

self put: bdy by: wkr
on: mv2siteQ
msg: 'completes making plates, on'.

bdy <- nil.

(self testIdle: tObj) ifFalse: [
bdy <- self getBy: wkr from: platesQ

msg:'starts to make Plates for'.
J.
self free: tObj when: bdy from: platesW.
Abdy.

procDig: tObj I wkr bdy I

wkr <- tObj workers first.
bdy <- tobj body.
tObj body: nil.

self put: bdy by: wkr
on: dugQ
msg: 'completes the hole, for'.

self testIdle: tObj) ifTrue:[
bdy <- nil.

]ifFalse: [
bdy <- self getBy: wkr from: digQ

msg: 'starts to dig a hole , for'.]i.
self free: tObj when: bdy from: digW.
Abdy.

procMv2site: tObj I wkr bdy I

wkr <- tObj workers.
bdy <- tObj body.
tobj body: nil.

self put: bdy by: wkr
on: dd3x5Q
msg: 'completes moving to site, with'.

(self testIdle: tObj) ifTrue:[
bdy <- nil.

]ifFalse: [
bdy <- self getBy: wkr from: mv2siteQ.
bdy notNil ifTrue:

(dugQ remove: bdy
ifAbsent: [nil J) isNil ifTrue:[

139

bdy <- self getHole: bdy.

bdy notNil ifTrue:
self msg: 'starts to move to site, with

wkr: wkr bdy: bdy.

self free: tobj when: bdy from: mv2siteW.
A. ̂bdy.

getHole: bdy I b w I
(b <- dugQ remove) isNil ifTrue: [

self put: bdy on: notDugQ.
'body(', (bdy printString),
')s hole is not yet pre-pared.']display.

(digQ contain: b) ifFalse: [
((w <- digW first) isNil or:

[(w body == bdy) not 3) isTrue: [
self put: bdy on: digQ

^nil
3 ifFalse:

self put: b on: digQ.
U ((bdy printString),

') is to be placed in (',
(b printString), ')s hole.'

S""]display.
A bdy

"All bodies that were not ready for the mv2site
are in the notDugQ. These bodies are put on the mv2siteQ
when the hole is ready (ie. the body is in the dugQ) .

procDemon 1 1 I
1 <- List new.
notDugQ do: [:b I

1 add: b.
self put: b on: mv2siteQ.

1 do: [:b I notDugQ remove: b 3.

procDd3x5: tObj I wkr bdy I

wkr <- tObj workers first.
bdy <- tObj body.
tObj body: nil.

self put: bdy by: wkr
on: inCoverQ
msg: 'completes Dd3x5, on'.

self put: bdy by: wkr
on: shipPeQ.

140

A.,~ % %

self testIdle: tObj) ifTrue:[
bdy <- nil.

]ifFalse: [
bdy <- self getBy: wkr from: dd3x5Q

msg: 'starts to Dd3x5, of'.
].
self free: tObj when: bdy from: dd3x5W.

^bdy.

procShipPe: tObj I wkr bdy I

wkr <- tObj workers first.
tobj body: nil.

self msg: 'completes PE for shipment for'
wkr: wkr bdy: bdy.

self testIdle: tObj) ifTrue:[
bdy <- nil.

]ifFalse: [
bdy <- self getBy: wkr from: shipPeQ

msg: 'starts to shipPe, of'.
1.
self free: tObj when: bdy from: shipPeW.

Abdy.

procInCover: tObj wkr bdy I

wkr <- tObj workers.
bdy <- tobj body.
tobj body: nil.

self put: bdy by: wkr
on: groundQ
msg: 'completes covering the grave of'.

self testIdle: tobj) ifTrue:[
bdy <- nil.

]ifFalse: [
bdy <- self getBy: wkr from: inCoverQ

msg: 'starts to put into grave for'.1.
self free: tObj when: bdy from: inCoverW.

Abdy.

141

- - --- - - -- - - H

I listQs
(' @ dugQ ' (dugQ printString))print.
(' @ notDugQ ', (notDugQ printString))print.
(' @ groundQ size=', (groundQ size printString),

work load=',
(self countIs printString))print.

@ -------------------------------- ' print.

I list
self listInTruck.
self listTask: taskList.
self listQs.

listWorkerTask
self listInTruck.

self listTask: taskList.
self listQs.

self append: 'Bdys' to: (self countIs).
self append: 'ThruPut' to: (groundQ size).

self listOutTC.
self reTask.

"14

'p.,

' 142

Class Truck

Class Truck :CollectionClass
contents "Where the bodies go."
destination "Unloading location."
beenToCP

startUp
beenToCP <- 0.
contents <- List new.

fill: n I time bdy I
(fill: ', (n printString),

I beenToCP = 1,
(beenToCP printString))print.

time <- (Clock new) set: (self timeIs).
n timesRepeat:

[bdy <- ((self create: Body
) beenToCP: beenToCP

) deathAt: time.
contents add: bdy.1.

self print:[((self printString),
I drives toward collection station.')].

Aself.
I printString

Asuper printString, (contents printString)

I goingTo: loc "Tell the truck driver where to go."
destination <- loc.

prefix: parent "make parent's name part of the prefix"
Aparent, 'trk'

I beenToCP: btc
beenToCP <- btc

"Contents testing/removing/adding"
I remove: aBody

Acontents removeKey: aBody
remove

Acontents remove
first

Acontents first

contents
Acontents

isEmpty
Acontents isEmpty

size
Acontents size

add: t put: bdy
Acontents add: bdy.

143

"Scheduling"
I t

destination isNil ifTrue: [
self print: [((self printString),
I motors off into the sun set.')]

ifFalse: [
self print: [((self printString),

' arrives.')].
destination add: (self timeIs)

put: self.

destination <- nil.

I leave: loc timeTo: t2
self nightTime ifTrue: [

t2 <- t2 * 2.
].
destination <- loc.
self schedule: t2.

1

i1

144

.. ... b

Class Uniform

Class Uniform :Probability
Ia b I "uniform distribution on [a,b]

from: start to: stop "initialize a and b"

start < stop
ifTrue: [a <- start. b <- stop
ifFalse: [a <- stop. b <- start

1var20: min In a b s31
s3 <- 3 sqrt.
n <- (min/ 5) * s3.
a <- min- n.
b <- min + n.

I taskClock Irdl
mnd <- self next.

A((Clock new)
incMin: (rnd integerPart)
incSec: ((rnd fractionPart *60) roundTo:l).

I mean
A(a + b) / 2.

variance
A (b - a) squared / 12.

Idensity: x
(x between: a and: b)

ifTmue: [A 1.0 / (b - a)
ifFalse: [A 0.0].

Isample: x
a =b) ifTrue: [A a]

ifFalse: [A a + (x *(b -a))].

145

Class UserAccess

o " This is a superclass of each object.
It allows access to the user data."

Class UserAccess :Obj
I userData i

userSetUp: ud
A userData ud.

"Give the wake up time."
I morning: ck

ck Clock new: (self timeIs).
(ck hour > 8)ifTrue:[

ck incDay: 1.1.
ck hour: 8.
ck min: 0.
ck sec: 0.
Ack

Passes on info. about when to terminate the IdleTasks.

setStop
userData setStop.

stopable
AuserData stopable.

" add one to counter. "
foo

userData foo: ((userData foo) + 1)

* I start
startuserData start.

IterminateNow
userData terminateNow

I terminate
userData terminate.

* " Describe a result. "
* report

('-----report from ',
(self printString))print.

('total number of passengers = ',
__ = (userData foo printString))print.

...... ' r nt.

146

Class UserData

to This is a storage for global data.
The data and messages for all global data are
defined in this class. "

Class UserData :Obj
I foo stop start n
stopable "Set when the last CI is reached."
sumBodys
nBodys

[new
start <- 0. "Number of idle tasks running."
stop <- false. "Flag the terminate state."
stopable <- false.
n <- 0.

This must be defined. May be empty."
to nextPrint is run before each event."

nextPrint: process Iti
t <- self timeIs.

1 ' ',(n printString),
'> ', (t printString),
' ', (process printString)

]display.
n <- n + 1. "stop conditions"
stop ifTrue: [Afalse].
Atrue.

Allow the idleTasks to terminate.

setStop
stopable <- true.

stopable
Astopable.

start "count the number of running idle tasks."
start <- start + 1.

(self printString), I start
(start printString)] display.

terminate "Terminate when all idle tasks stop."
(start <- start - 1) < 1

ifTrue: [self terminateNow].
(self printString), stop =

(start printString)] display.

terminateNow
stop <- true

147

foo: f 'set foo"
foo <

I foo oo"recall foo"

~14

'366

Class Worker

Class Worker :CollectionClass

idleMax idleCount
taskObj 11 what we are doing"
lastFun lastTime workTime idleTime
todayWorkT ime
name
sleeping

[startUp
lastTime <- Clock new.

.4kie< Coknw

woyorkTime <- Clock new.

idleTime <- Clock new.
lastFun <- 'null'.

V sleeping <- false.
name <- super printString.

taskobj <- nil. "1 what we are doing

idleMax <- 6. "number of times
idleount< ~*to wait idle, then quit"

Iprefix: echelon
A (echelon, IWO)

body
taskObj notNil ifTrue: [A(taskObj body) J
A nil

printString Ibdy s ml
5 <- of.

m <- false.
taskObj notNil ifTrue:

[(bdy <- taskObj body) notNil ifTrue:
[s <- s, (bdy printString).
m <- true.

sleeping ifTrue:[
S <-sISO.
m <- true.

m ifTrue: [s <- I(', s, ')']

Afname, s.

I printTime is model
self setTime.

s <- name, 'I' (todayWorkTime printHM).
mode <-'

149

lastFun = 'Working' ifTrue: [mode <- 'w'].
sleeping ifTrue: mode <- 's' .
'(s, mode)

"- control/query the sleep state."
setSleeping

sleeping <- true.

I sleeping
Asleeping.

---------------- How to start up a worker."
task: wl create: objClass I tObj I

tobj <- self create: objClass.
tObj startUpTask.
tObj workers: wl.
wl do:[:w I

w taskObj: tObj.
w setWorking.

AtObj

I taskObj: t
taskObj <- t.

taskObj
A taskObj.

I setTime It dtl
t <- self timels.
dt <- t - lastTime.

N lastFun = 'Idle'
ifTrue:[

idleTime <- idleTime + dt.
]ifFalse:[

lastFun = 'Working'
ifTrue:[

todayWorkTime <- todayWorkTime + dt.
workTime <- workTime + dt.

]].
lastTime <- t.

..setTime: fun

I . self setTime.
lastFun <- fun.

v setldle
taskObj <- nil.
self setTime: 'Idle'.

I setWorking

., .

150

AL •

self setTime: 'Working'.

today WorkTime
A today WorkT ime

IhoursWorked Ih m ti
h <- todayWorkTime hour.
mn <- todayWorkTime min / 60.
t <- h + mn.
At

---------- After the rest cycle."
next

self pr:[((self printString),
'is ready for work.')].

todayWorkTime <- Clock new.
sleeping <- false.
self idleWorker: self

151

LJMZV 1 V

Class GenericTasks

Class AnyTask :Task
startUpTask
max number of workers allowed.
min number of workers required
for one body.
taskTime return the time required.
#I prefix: echelon

next

---------------- If There is a truck unload it."
Class Unloader :Task

startUpTask
Aself.

I max "number of workers allowed."
A7.

min "number of workers required for one body."
A2.

I taskTime "return the time required."
A2.

I prefix: echelon
* A self name: (echelon, 'Unload')

Inext
self setWorking.
self body: (self unloadTruck: self).

---------------- If There is a truck load it."
Class Loader :Task

startUpTask
A self.

I prefix: echelon
A self name: (echelon, 'Load'

I max "number of workers allowed."
A6.

min "number of workers required for one body."
A2.

I taskTime "return the time required."
A2.

I next
self setWorking.
self body: (self loadTruck: self).

"---------------- Process to assign evacuation numbers. "
Class Evac :Task

152

, * ,. -. . - • " - % '. % ,. . , - "/. . . " - . . % . % k % %

startUpTask
Aself.

max "number of workers allowed."
Al.

min "number of workers required for one body."
Al.

taskTime "return the time required."
A5.

I prefix: echelon
Aself name: (echelon, 'Evac')

I next
self setWorking.
self body: (self procEvac: self).
self reSchedule: self.

------.See who this is and process his personal effects. "
Class Id :Task

startUpTask
Aself.

max "number of workers allowed."
A999.

min "number of workers required for one body."
Al.

taskTime "return the time required"
A40.

taskClock I c I
c _ super taskClock.
(self body) fingerPrint ifTrue: [c incMin: 15].
AC.

prefix: echelon
Aself name: (echelon, 'Id'

next
self setWorking.
self body: (self procId: self).
self reSchedule: self.

"-- Pack into transport bag with PE and move to load area."
Class Pack :Task

startUpTask
Aself.

max "number of workers allowed."
A999.

min "number of workers required for one body."
A2.

I taskTime "return the time required."
A10.

I prefix: echelon

153

/ -

A self name: (echelon, 'Pack'
next

self setWorking.
self body: (self procPack: self).
self reSchedule: self.

-- "---------------- Add him to the convoy list."
Class Dd :Task

startUpTask
,*,self.

I max "number of workers allowed."

I min "number of workers required for one body."
Al.

I taskTime "return the time required."
A5.

prefix: echelon
Aself name: (echelon, 'Dd'

I next
self setWorking.
self body: (self procDd: self).
self reSchedule: self.

----------- Process other overhead items required."
Class Misc :Task
[startUpTask

Aself.

max "number of workers allowed."
A999.

I min "number of workers required for one body."

I taskTime "return the time required."
A5.

I prefix: echelon
Aself name: (echelon, 'Misc'

next
self setWorking.
self body: (self procMisc: self).
self reSchedule: self.

------ See who this is and process his personal effects. "
Class CkId :Task

. [startUpTask
A self.

I max "number of workers allowed."

154

A999.

min "number of workers required for one body."
Al.

taskTime "return the time required"
A30.

prefix: echelon
Aself name: (echelon, 'CkId')

next
self setWorking.
self body: (self procCkId: self).
self reSchedule: self.

------ Move to load area."
Class Move :Task

startUpTask
^self.

1 max "number of workers allowed."
A999.

min "number of workers required for one body."
^2.

I taskTime "return the time required."
A5.

prefix: echelon
Aself name: (echelon, 'Move'

I next
self setWorking.
self body: (self procMove: self).
self reSchedule: self.

------ Remove clothing."
Class DisRobe :Task

startUpTask
Aself.

max "number of workers allowed."
A999.

min "number of workers required for one body."
A2.

I taskTime "return the time required"
A20.

I prefix: echelon
Aself name: (echelon, 'DisRobe')

I next
self setWorking.
self body: (self procDisRobe: self).
self reSchedule: self.

------- Take finger prints."

155

~ .**.,. - V.~ ~..I

Class Fingerp :Task
startUpTask

Aself.

max "number of workers allowed."
A999.

min "number of workers required for one body."< Al.
taskTime "return the time required"

A 15.
- prefix: echelon

Aself name: (echelon, 'FingerP')
I next

self setWorking.
self body: (self procFingerP: self).
self reSchedule: self.

"---------------- Do a detailed Id."
Class DTailId :Task

startUpTask
A self.

max "number of workers allowed."
A999.

-, min "number of workers required for one body."

I taskTime "return the time required"
A30.

I prefix: echelon
Aself name: (echelon, (DTailId'

I next
k self setWorking.

self body: (self procDTailId: self).
self reSchedule: self.

---------------- Place body into shroud."
Class Shroud :Task

startUpTask
A self.

max "number of workers allowed."
A999.

Smin "number of workers required for one body."
A 2.

I taskTime "return the time required"
A

5 .

I prefix: echelon
Aself name: (echelon, 'Shroud'

I next
self setWorking.
self body: (self procShroud: self).
self reSchedule: self.

156

---------------- Make Id Plates."

Class Plates :Task
startUpTask

Aself.
max "number of workers allowed."

A2.

min "number of workers required for one body."
Al.

I taskTime "return the time required"
A

1
0.

I prefix: echelon
Aself name: (echelon, 'Plates')

I next
self setWorking.
self body: (self procPlates: self).
self reSchedule: self.

S"----------------- Dig the Hole, with hole digger."
Class Dig :Task

startUpTask
Aself.

max "number of workers allowed."
Al.

min "number of workers required for one body."
Al.

taskTime "return the time required"
A10.

prefix: echelon
A self name: (echelon, 'Dig')

next
self setWorking.

7 self body: (self procDig: self).
self reSchedule: self.

---------------- Prepare personal effects for shipping."
, Class ShipPe :Task

[. startUpTask
Aself.

I max "number of workers allowed."
A999.

min "number of workers required for one body."
Al.

I taskTime "return the time required"
A15.

I prefix: echelon
Aself name: (echelon, 'ShipPe'

157

'V ~ ~ ~ ~ ~ ~ ~ ~ m e,-y V(~ ~~v-.~; ~

I next
self setWorking.
self body: (self procShipPe: self).
self reSchedule: self.

"- ---------------- Place body in grave and cover."
Class Mv2site :Task

startUpTask
^self.

max "number of workers allowed."
A999.

min "number of workers required for one body."
A"2.

I taskTime "return the time required"
A10.

[prefix: echelon
Aself name: (echelon, 'Mv2site')

[next
self setWorking.
self body: (self procMv2site: self).
self reSchedule: self.

"---------------- Prepare internment and plot records."
Class Dd3x5 :Task
[startUpTask

Aself.

I max "number of workers allowed."
Al.

i min "number of workers required for one body."
Al.

I taskTime "return the time required"
A 20.

I prefix: echelon
Aself name: (echelon, 'DD3x5')

i next
self setWorking.
self body: (self procDd3x5: self).
self reSchedule: self.

---------------- Place body in grave and cover."
Class InCover :Task

startUpTask
Aself.

max "number of workers allowed."
A999.

min "number of workers required for one body."
A2.

i taskTime "return the time required"
A15.

158

Iprefix: echelon 16

A self name: (echelon, 'InCover'

netself setworking.
self body: (self proclnCover: so-lf).
self reSchedule: self.

15

All.

Mall

Cop ie s Organization Copies Organization

12 Administrator 1 Commander %
Defense Technical Info Center U.S. Army Communications- I
ATTN: DTIC-DDA Electronics Command

Cameron Station ATTN: AMSEL-ED
Alexandria, VA 22304-6145 Fort Monmouth, NJ 07703

HQDA 1 Commander

DA!A-ART-M ERADCOM Technical Library I
Washington, D.C. 20310 ATTN: DELSD-L (Reports Section)

Fort Monmouth, NJ 07703-5301

Commander

U.S. Army Materiel Command 1 Commander
ATTN: AMCDRA-ST U.S. Army Missile Command

5001 Eisenhower Avenue Research, Development & Engin-
Alexandria, VA 22333-0001 eering Center

ATTN: AMSMI-RD
Commander Redstone Arsenrl, AL 35898
Armament R&D Center
U.S. Army AMCCOM 1 Director

ATTN: SMCAR-TSS U.S. Army Missile & Space
Dover, NJ 07801 Intelligence Center

ATTN: AIAMS-YDL
Ccmmander Redstone Arsenal, AL 35896-550',

r ,am~ent R&D Center
L" S. Army AOCCO' 1 Comrnder

.,. SMCAR-TDC U.S. Arty Tank Automotive Cmd
Dover, NJ 07801 ATTh: AMxS!A-TSL

Warren, Ml 48397-5000

Director

Benet Weapons Laboratory 1 Director

Armament R&D Center U.S. Army TRADOC Systems AnalysiP
I.S. Arny A_-CCO Activity
AT T1: SMCA-LCB-TL ATTN: ATAA-SL
WateryVliet, NY 12189 White Sands Missile Range, N.

8t
Con-zander
U,S. Army Armprent, Munitions I Commandant

and Chemical Ccmmand U.S. Army Infantry School
ATTY: SMCAF-ESP-L ATTN: ATSH-CD-CSO-OR
Rock Island, IL 61299 Fort Benning, GA 31905

Coara ner 1(Commander
U.S. Army Aviation Research U.S. Army Development and EmpI(cx-

and Development Command ment Agency

ATTY: AMSAV-E ATTN: MODE-TED-SAB
4300 Coodfellow Blvd Fort Lewis, WA 98433
St. Louis, MO 63120

1 AnYL/SIFL
Director Kirtland AFB, N'M 87117
U.S. Army Air Mobility Research
and Development Laboratory 1 Air Force Armament Laboratory

Ames Research Center ATTN: AFATL/DLODL
Noffett Field, CA 9L035 Eglin AT, FL 32542-5000

161

4,1 % .

cpies Orvanizatior. ABERDEEN PROVINC GROUNT,

10 Central !EtElligence Agency Dir, USAISAA
Office of Central Reference ATTN: A MSY-D
Dissem-ination Lranch A1VXSY-MP# H1. CoheL
Roo= GE-47 HQSCdUAEO
Washington, D.C. 20502 ATTr : U ACMETF

Cdr, CRDC, AMCCQM
ATTN: SMCCR-RSP-A

SMCCR-MJ
SMCCR-SPS-IL

162

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the
reports it publishes. Your comments/answers to the items/questions below will
aid us in our efforts.

1. BRL Report Number Date of Report_ _ _

2. Date Report Received__ _

3. Does this report satisfy a need? (Comment on purpose, related project, or
other area of interest for which the report will be used.)

4. How specifically, is the report being used? (Information source, design
data, procedure, source of ideas, etc.)

5. Has the information in this report led to any quantitative savings as far
as man-hours or dollars saved, operating costs avoided or efficiencies achieved,
etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future
reports? (Indicate changes to organization, technical content, format, etc.)

Name

CURRENT Organization

ADDRESS AAddress

City, State, Zip

7. If indicating a Change of Address or Address Correction, please provide the
New or Correct Address in Block 6 above and the Old or Incorrect address below.

Name

OLD Organization
ADDRESS

Address

City, State, Zip

(Remove this sheet along the perforation, fold as indicated, staple or tape
closed, and mail.)

- FOLD HERE

% Director NO POSTAGE
U.S. Army Ballistic Research Laboratory * NECESSARY
ATTN: SLCBR-DD-T IF MAILED

' Aberdeen Proving Ground, MD 21005-5066 IN THE
UNITED STATES

OFFICIAL BUSINESS I
PENALTY FOR PRIVATE US. 0 BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO 12062 WASHINGTON,DC

POSTAGE WILL BE PAID BY DEPARTMENT OF THE ARMY

Director

U.S. Army Ballistic Research Laboratory

ATTN: SLCBR-DD-T

Aberdeen Proving Ground, MD 21005-9989

FOLD HERE

Nr

I

.-w ..7

